

#13: Trees

September 26, 2018 · Wade Fagen-Ulmschneider

Iterators
In C++, iterators provide an interface for client code access to data in
a way that abstracts away the internals of the data structure.

An instance of an iterator is a current location in a pass through the
data structure:

Type Cur. Location Current Data Next

Linked List

Array

Hypercube

The iterator minimally implements three member functions:
 operator*, Returns the current data
 operator++, Advance to the next data
 operator!=, Determines if the iterator is at a different location

Implementing an Iterator
A class that implements an iterator must have two pieces:

1. [Implementing Class]: Must implement:

-

-

2. [Implementing Class’ Iterator]:
A separate class (usually an internal class) that extends
std::iterator and implements an iterator. This requires:

 -

 -

 -

Locations of ::begin and ::end iterators:

Type ::begin() ::end()

Linked List

Array

Using an Iterator

stlList.cpp
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#include <vector>

#include <string>

#include <iostream>

struct Animal {

 std::string name, food;

 bool big;

 Animal(std::string name = "blob", std::string food = "you",

bool big = true) :

 name(name), food(food), big(big) { /* nothing */ }

};

int main() {

 Animal g("giraffe", "leaves", true),

 p("penguin", "fish", false), b("bear");

 std::vector<Animal> zoo;

 zoo.push_back(g);

 zoo.push_back(p); // std::vector’s insertAtEnd

 zoo.push_back(b);

 for (std::vector<Animal>::iterator it = zoo.begin();

 it != zoo.end(); it++) {

 std::cout << (*it).name << " " << (*it).food << std::endl;

 }

 return 0;

}

Q: What does the above code do?

For-Each loop with Iterators

stlList-forEach.cpp
20

21

22

for (const Animal & animal : zoo) {

 std::cout << animal.name << " " << animal.food << std::endl;

}

Trees!
“The most important non-linear data structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

We will primarily talk about binary trees:

 What’s the longest English word you can make using the
vertex labels in the tree (repeats allowed)?

 Find an edge that is not on the longest path in the tree. Give
that edge a reasonable name.

 One of the vertices is called the
root of the tree. Which one?

 Make a “word” containing the
names of the vertices that have a
parent but no sibling.

 How many parents does each
vertex have?

 Which vertex has the fewest
children?

 Which vertex has the most
ancestors?

 Which vertex has the most
descendants?

 List all the vertices is b’s left subtree.

 List all the leaves in the tree.

Definition: Binary Tree
A binary tree T is either:

Tree Property: Tree Height

Tree Property: Full

Tree Property: Perfect

 Tree Property: Complete

CS 225 – Things To Be Doing:

1. Programming Exam A starts tomorrow (Thursday!)
2. MP3 has been released; extra credit deadline is Monday!
3. lab_quacks in lab this week
4. Daily POTDs

