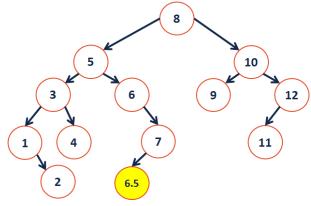
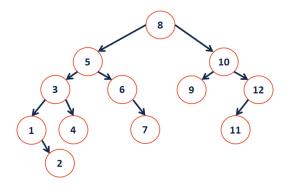


CS 2
2 5#20: AVL Analysis
October 12, 2018 · Wade Fagen-Ulmschneider

AVL Insertion



AVL Removal



Running Times:

	AVL Tree
find	
insert	
remove	

Motivation:

Big-O is defined as:

Let **f(n)** describe the height of an AVL tree in terms of the number of nodes in the tree (**n**). Visually, we can represent the big-O relation:

 $f(n) \le c \times g(n)$: Provides an upper bound:

The height of the tree, **f(n)**, will always be less than $\mathbf{c} \times \mathbf{g}(\mathbf{n})$ for all values where $\mathbf{n} > \mathbf{k}$.

 $f^{-1}(h) \ge c \times g^{-1}(h)$: Provides a lower bound:

The number of nodes in the tree, **f**¹(**h**), will always be <u>greater</u> <u>than</u> $\mathbf{c} \times \mathbf{g}^{-1}(\mathbf{h})$ for all values where $\mathbf{n} > \mathbf{k}$.

Plan of Action:

Goal: Find a function that defines the lower bound on **n** given **h**.

Given the goal, we begin by defining a function that describes the smallest number of nodes in an AVL of height **h**:

Proving our IH:

V. Using a proof by induction, we have shown that:

...and by inverting our finding:

Theorem:

An AVL tree of height **h** has at least ______.

I. Consider an AVL tree and let **h** denote its height.

II. Case: _____

III. Case: _____

Summary of Balanced BSTs:

Disadvantages

IV. Case: _____

Inductive hypothesis (IH):

CS 225 – Things To Be Doing:

- 1. Theory Exam 2 is ongoing!
- **2.** MP4 extra credit submission ongoing due Monday!
- **3.** lab_huffman is due on Sunday
- **4.** Daily POTDs are ongoing!