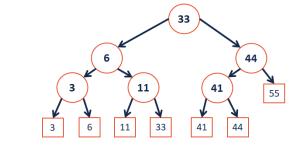


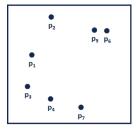
#22: kd-Trees and BTrees Intro


October 17, 2018 · Wade Fagen-Ulmschneider

Range-based Searches:

Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$what points fall in [11, 42]?

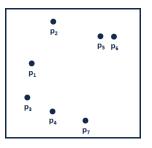
Tree Construction:



Range-based Searches:

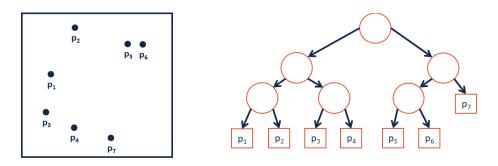
Running Time:

Extending to k-dimensions:


Consider points in 2D: $\mathbf{p} = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n}$:

...what points are inside a range (rectangle)? ...what is the nearest point to a query point **q**?

kd-Tree Motivation:

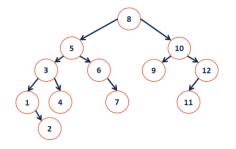

First, let's try and divide our space up:

kd-Tree Construction:

How many dimensions exist in our input space?

How do we want to "order" our dimensions?

Motivation


-

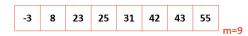
Can we always fit our data in main memory?

Where else do we keep our data?

vs. CPU: 3 GHz == 3m ops / _____* ___ cores

AVL Operations on Disk:

How deep do AVL trees get?


BTree Motivations

Knowing that we have long seek times for data, we want to build a data structure with two (related) properties:

1.

2.

BTree_m

Goal: Build a tree that uses _____/node! _____/node! _____/node!

A **BTree of order m** is an m-way tree where:

1. All keys within a node are ordered.

2. All leaves contain no more than **m-1** nodes.

BTree Insert, using m=5

...when a BTree node reaches **m** keys:

CS 225 – Things To Be Doing:

- **1.** Programming Exam B starts next Thursday (Oct 25th)
- 2. MP4 extra credit ongoing (final deadline Monday, Oct. 17th)
- 3. lab_avl released this week; course feedback in lab this week!
- **4.** Daily POTDs are ongoing!