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BTree Motivation 
Big-O assumes uniform time for all operations, but this isn’t always 
true. 
 
However, seeking data from the cloud may take 100ms+. 
   …an O(lg(n)) AVL tree no longer looks great: 
 
 
 
 
 
 
 
 

 
Consider Instagram profile data: 
 

How many 
profiles? 

 

How much data 
/profile? 

 

 AVL Tree BTree 
Tree Height  

 
 

 

 
BTree Motivations 
Knowing that we have long seek times for data, we want to build a 
data structure with two (related) properties: 
 
1. 
 
 
 
2. 
 
 
 
 

BTreem 
 

 
 
 
Goal: Build a tree that uses _________________ /node! 
                                               …optimize the algorithm for your platform! 
 
 
A BTree of order m is an m-way tree where: 
 

1. All keys within a node are ordered. 
 
 

BTree Insert, using m=5 
 
 
 
 
 
 
…when a BTree node reaches m keys: 
 
 
 
 
 

 
BTree Insert, m=3: 
 
 
 

 
 
 
 

 
Great interactive visualization of BTrees: 
   https://www.cs.usfca.edu/~galles/visualization/BTree.html 

https://www.cs.usfca.edu/~galles/visualization/BTree.html


BTree Properties 
 

For a BTree of order m: 
1. All keys within a node are ordered. 
2. All leaves contain no more than m-1 nodes. 

 
3. All internal nodes have exactly one more key than 

children. 
4. Root nodes can be a leaf or have [2, m] children. 
5. All non-root, internal nodes have [ceil(m/2), m] children. 

 
6. All leaves are on the same level. 

 

 
Example BTree 

 
 
What properties do we know about this BTree? 
 
 
 
 

 
BTree Search 

 
 

 
 

BTree.hpp 
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bool Btree<K, V>::_exists(BTreeNode & node, const K & key) { 

  unsigned i; 

  for (i=0; i<node.keys_ct_ && key<node.keys_[i]; i++) { } 

 

  if ( i < node.keys_ct_ && key == node.keys_[i] ) { 

    return true; 

  } 

 

  if ( node.isLeaf() ) { 

    return false; 

  } else { 

    BTreeNode nextChild = node._fetchChild(i); 

    return _exists(nextChild, key); 

  }  

} 

 
BTree Analysis 
The height of the BTree determines maximum number of 
____________ possible in search data. 
 
…and the height of our structure: 
 
 
Therefore, the number of seeks is no more than: ___________. 
 

…suppose we want to prove this! 
 

 
BTree Analysis 
In our AVL Analysis, we saw finding an upper bound on the height 
(given n) is the same as finding a lower bound on the nodes (given h). 
 
Goal: We want to find a relationship for BTrees between the number 
of keys (n) and the height (h). 
 
 
 
 
 

CS 225 – Things To Be Doing: 

1. Programming Exam B starts next Thursday 
2. MP4 due next Monday (Oct. 22) 
3. lab_avl due Sunday 
4. Daily POTDs are ongoing! 

 


