
 

#23: BTrees 

October 19, 2018 · Wade Fagen-Ulmschneider 

 
BTree Motivation 
Big-O assumes uniform time for all operations, but this isn’t always 
true. 
 
However, seeking data from the cloud may take 100ms+. 
   …an O(lg(n)) AVL tree no longer looks great: 
 
 
 
 
 
 
 
 

 
Consider Instagram profile data: 
 

How many 
profiles? 

 

How much data 
/profile? 

 

 AVL Tree BTree 
Tree Height  

 
 

 

 
BTree Motivations 
Knowing that we have long seek times for data, we want to build a 
data structure with two (related) properties: 
 
1. 
 
 
 
2. 
 
 
 
 

BTreem 
 

 
 
 
Goal: Build a tree that uses _________________ /node! 
                                               …optimize the algorithm for your platform! 
 
 
A BTree of order m is an m-way tree where: 
 

1. All keys within a node are ordered. 
 
 

BTree Insert, using m=5 
 
 
 
 
 
 
…when a BTree node reaches m keys: 
 
 
 
 
 

 
BTree Insert, m=3: 
 
 
 

 
 
 
 

 
Great interactive visualization of BTrees: 
   https://www.cs.usfca.edu/~galles/visualization/BTree.html 

https://www.cs.usfca.edu/~galles/visualization/BTree.html


BTree Properties 
 

For a BTree of order m: 
1. All keys within a node are ordered. 
2. All leaves contain no more than m-1 nodes. 

 
3. All internal nodes have exactly one more key than 

children. 
4. Root nodes can be a leaf or have [2, m] children. 
5. All non-root, internal nodes have [ceil(m/2), m] children. 

 
6. All leaves are on the same level. 

 

 
Example BTree 

 
 
What properties do we know about this BTree? 
 
 
 
 

 
BTree Search 

 
 

 
 

BTree.hpp 
100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

bool Btree<K, V>::_exists(BTreeNode & node, const K & key) { 

  unsigned i; 

  for (i=0; i<node.keys_ct_ && key<node.keys_[i]; i++) { } 

 

  if ( i < node.keys_ct_ && key == node.keys_[i] ) { 

    return true; 

  } 

 

  if ( node.isLeaf() ) { 

    return false; 

  } else { 

    BTreeNode nextChild = node._fetchChild(i); 

    return _exists(nextChild, key); 

  }  

} 

 
BTree Analysis 
The height of the BTree determines maximum number of 
____________ possible in search data. 
 
…and the height of our structure: 
 
 
Therefore, the number of seeks is no more than: ___________. 
 

…suppose we want to prove this! 
 

 
BTree Analysis 
In our AVL Analysis, we saw finding an upper bound on the height 
(given n) is the same as finding a lower bound on the nodes (given h). 
 
Goal: We want to find a relationship for BTrees between the number 
of keys (n) and the height (h). 
 
 
 
 
 

CS 225 – Things To Be Doing: 

1. Programming Exam B starts next Thursday 
2. MP4 due next Monday (Oct. 22) 
3. lab_avl due Sunday 
4. Daily POTDs are ongoing! 

 


