CS/Z\ #35: Adjacency List + BFS
2 5] November 16, 2018 - Wade Fagen-Ulmschneider

Graph Implementation #3: Adjacency List

Running Times of Classical Graph Implementations

Edge List Adj. Matrix Adj. List
Space n+m nz n+m
insertVertex 1 n 1
removevVertex m n deg(v)
insertEdge 1 1 1
removeEdge 1 1 1
incidentEdges m n deg(v)
areAdjacent m 1 mi(;:a(g((l‘e/eg()v)

Vertex List Edges
u a
v b
w c
z d

Operations on an Adjacency Matrix implementation:
insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex vi1, Vertex v2, K key):

Big Picture Ideas: Comparing Implementations
Q: If we consider implementations of simple, connected graphs, what
relationship between n and m?

- On connected graphs, is there one algorithm that underperforms the
other two implementations?

...what if our graph is sparse and not connected?

Q: Is there clearly a single best implementation?

- Optimized for fast construction:

- Optimized for areAdjacent operations:

Graph Traversal

Objective: Visit every vertex and every edge in the graph.
Purpose: Search for interesting sub-structures in the graph.

We’ve seen traversal before — this is different:

BST Graph
O O
© Q g O O
({ .i\ — _
(\7 ,.:I (\7 :‘ h \'/ '_-\:I
BFS Graph Traversal: @)
® ©O—©D
P . ‘
= P |
E) &) .
|
©——~=F
Pseudocode for BFS
1 | BFS(G):
2 Input: Graph, G
3 Output: A labeling of the edges on
4 G as discovery and cross edges
5
6 foreach (Vertex v : G.vertices()):
7 setLabel (v, UNEXPLORED)
8 foreach (Edge e : G.edges()):
9 setLabel (e, UNEXPLORED)
10 foreach (Vertex v : G.vertices()):
11 if getlLabel (v) == UNEXPLORED:
12 BFS (G, V)
13
14 | BFS(G, Vv):
15 Queue q
16 setLabel (v, VISITED)
17 q.enqueue (V)
18
19 while !q.empty():
20 v = q.dequeue ()
21 foreach (Vertex w : G.adjacent(v)):
22 if getlLabel (w) == UNEXPLORED:
23 setLabel (v, w, DISCOVERY)
24 setLabel (w, VISITED)
25 g.enqueue (w)
26 elseif getLabel (v, w) == UNEXPLORED:
27 setLabel (v, w, CROSS)

Vertex | Distance | Prev. Adjacent
) (d) (§3))
A
B
C
D
E
F
G
H
BST Graph Observations (R
1. Does our implementation handle)] / \\
disjoint graphs? How? () (o) —— {D)
a. How can we modify our (\E) RN_FK:'
code to count \ s
components? .) N
(} ----------- (H)

2. Can our implementation detect a cycle? How?

CS 225 — Things To Be Doing:

Programming Exam C is different than usual schedule:
Exam: Sunday, Dec 2 — Tuesday, Dec 4

lab_dict on-going; due on Tuesday, Nov. 27

MP6 EC+3 due tonight; final due date on Monday, Nov. 26

No POTDs over break (next one after today is Monday, Nov. 26)

