cs/z\ #37: Minimum Spanning Trees (MST)
2 5 November 28, 2018 - Wade Fagen-Ulmschneider

Graph Traversal — BFS

Modifying BFS to create DFS

Big Ideas: Utility of a BFS Traversal
Obs. 1: Traversals can be used to count components.
Obs. 2: Traversals can be used to detect cycles.
Obs. 3: In BFS, d provides the shortest distance to every
vertex.
Obs. 4: In BFS, the endpoints of a cross edge never differ in
distance, d, by more than 1: |d(u) - d(v)]| =1

DFS Graph Traversal B — - ®)

Idea: Traverse deep into the |
graph quickly, visiting more | B) © @
distant nodes before neighbors. |

Two types of edges: (R\ @\

©CO~NOOUITAWN PP

BFS(G):
Input: Graph, G
Output: A labeling of the edges on
G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel (v, UNEXPLORED)
foreach (Edge e : G.edges()):
setLabel (e, UNEXPLORED)
foreach (Vertex v : G.vertices()):
if getlLabel(v) == UNEXPLORED:
BFS(G, V)

BFS(G, v):
Queue q
setLabel (v, VISITED)
q.enqueue(Vv)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
iT getLabel(w) == UNEXPLORED:
setLabel (v, w, DISCOVERY)
setLabel (w, VISITED)
q.enqueue(w)
elseif getlLabel (v, w) == UNEXPLORED:
setLabel (v, w, CROSS)

Minimum Spanning Tree

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

NS
7
7//2?

http://csunplugged.org/minimal-spanning-trees/

A Spanning Tree on a connected graph G is a subgraph, G’, such
that:

1. EveryvertexisGisin G’ and

2. G’is connected with the minimum number of edges

This construction will always create a new graph that is a
(connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal
total edge weights among all spanning trees.

o Every edge must have a weight
0 The weights are unconstrained, except they must be
additive (eg: can be negative, can be non-integers)
e Output of a MST algorithm produces G’:
o0 G’isaspanning graph of G
o G'isatree

G’ has a minimal total weight among all spanning trees. There may be
multiple minimum spanning trees, but they will have the same total
weight.

Pseudocode for Kruskal’s MST Algorithm

1 | KruskalMST(G):
2 DisjointSets forest
3 foreach (Vertex v : G):
4 forest.makeSet(v)
5
6 PriorityQueue Q // min edge weight
7 foreach (Edge e : G):
8 Q.insert(e)
9
10 Graph T = (v, {})
11
12 while |T.edges(Q)| < n-1:
13 Vertex (u, v) = Q.removeMin(Q)
14 if forest.find(u) == forest.find(Vv):
15 T.addEdge(u, v)
16 forest._union(forest.find(u),
17 forest_find(v))
18

19 return T

Kruskal’s Algorithm

(A, D)
(E, H)
(F, G)
(8, D)
(G, E)
(G, H)
(E, Q)
(C, H)
(E, F)
(F, C)
(D, E)
(8, Q)
(¢, D)
(A, F)
(D, F)

CS 225 — Things To Be Doing:

1. Programming Exam C is different than usual schedule:

Exam: Sunday, Dec 2 — Tuesday, Dec 4

2. MP7 Released — Slightly different structure:
Hard Deadline on Monday, Dec. 3 for Part 1

3. lab_ml this week in lab

4. Daily POTDs are ongoing for +1 point /problem

