CS 225

Data Structures

Sept. 21 — Stacks and Queues

Wade Fagen-Ulmschneider

List.h

#pragma once

template <typename T>

class List {
public:
/%

private:

*/

Array Implementation

C|s|2|2]|s5
0] (1] [2] [3] [4]

Array Implementation

insertAtFront:

C S 2 2 5

[0 [1] [2] (3] [4]

Resize Strategy: +2 elements every time

Resize Strategy: +2 elements every time

Resize Strategy: x2 elements every time

Resize Strategy: x2 elements every time

Array Implementation

_ L

Insert/Remove at front

Insert at given element

Remove at given element

Insert at arbitrary location

Remove at arbitrary location

std::vector

Q

[F5]
I

(1]

cppreference.com Create account

Page Discussion View Edit History

C++ Containers library std::vector

std:-vector

Defined in header <vector=

template=<

class T,

class Allocator = std::allocator<T=
= class vector;

{1)

namespace pmr 1
template =class T=

using vector = std::vector<T, std::pmr::polymorphic_allocator<Tes; = ‘Sne=Cs™id

1) std: :vector is a segquence container that encapsulates dynamic size arrays.
2) std: :pmr::vector is an alias template that uses a polymorphic allocator

The elements are stored contiguously, which means that elements can be accessed not only through
iterators, but also using offsets to regular pointers to elements. This means that a pointer to an element (since C++03)
of a vector may be passed to any function that expects a pointer to an element of an array.

The storage of the vector is handled automatically, being expanded and contracted as needed. Vectors usually occupy
more space than static arrays, because more memory is allocated to handle future growth. This way a vector does not
need to reallocate each time an element is inserted, but only when the additional memory is exhausted. The total
amount of allocated memory can be queried using capacity() function. Extra memory can be returned to the system
via a call to shrink to fit(). (since c++11)

Element access

at
operator[]
front

back

data(c++11)

access specified element with bounds checking
[public member function)

access specified element
[public member function}

access the first element
[public member function)

access the last element
[public member function)

direct access to the underlying array
[public member function}

Capacity
empty
size
max size
reserve

capacity

shrink to fitic++11)

checks whether the container is empty
[public member function)

returns the number of elements
[public member function)

Modifiers

clear

insert

emp laceic++11)
erase

push_back

emp lace_back ic++11)
pop_back

resize

swap

clears the contents
[public member function)

inserts elements
(public member function}

constructs element in-place
(public member function)

erases elements
(public member function)
adds an element to the end

[public member function)

constructs an element in-place at the end
(public member function}

removes the last element
(public member function)

changes the number of elements stored

(public member function)

swaps the contents
[public member function}

returns the maximum possible number of elements

[public member function)

resarves StDrEIgE
[public member function)

returns the number of elements that can be held in currently allocated storage

[public member function)

[public member function)

reduces memory usage by fresing unused memory

Stack ADT

Queue ADT

Stack.h

0O JdJo LT WDN =

#pragma once
#include <vector>

template <typename T>
class Stack {
public:
void push (T & t);
T & pop();
bool isEmpty() ;

private:

std: :vector<T> list ;

Iy

#include "Stack.hpp"

Stack Implementation

template <typename T>

void Stack<T>::push(const T & t) {
list .push back(t);

}

00O Jdo OnddW

template <typename T>
Olconst T & Stack<T>::pop() {
10 const T & data = list .back();
11 list .pop back() ;
12 return data;

Implications of Design

1.

class ListNode {
public:
T & data;
ListNode * next;

2. class ListNode ({
public:
T * data;

3. class ListNode {
public:
T data;

Implications of Design

_ Storage by Reference Storage by Pointer Storage by Value

Who manages the lifecycle
of the data?

Is it possible for the data
structure to store NULL?

If the data is manipulated
by user code while in our
data structure, is the
change reflected in our
data structure?

Is it possible to store
literals?

Speed

Data Lifecycle

Storage by reference:

1 | Sphere s;
2 i{myStack.push(s) ;

Storage by pointer:

1l | Sphere s;
2 |myStack.push (&s) ;

Storage by value:

1l | Sphere s;
2 i\myStack.push(s) ;

Possible to store NULL?

Storage by reference:

class ListNode {
public:
T & data;
ListNode * next;
ListNode (T & data) : data(data), next (NULL) { }

};

Storage by pointer:

T ** arr;

Storage by value:

T * arr;

Data Modifications

SSoordkd WD R

Sphere s (1) ;
myStack.push (s) ;

s.setRadius (42) ;

Sphere r = myStack.pop() ;
// What is r’s radius?

Speed

