CS 225

Data Structures

Sept. 26 — Trees

Wade Fagen-Ulmschneider

lterators

Suppose we want to look through every element in our
data structure:

1NN
“e

™
"

Iterators encapsulated access to our data:

P D D D

o tocrion | Grore Nt

__.-;Qj ListNode *

index

/ (x, vy, 2z)

Do

™

lterators

Every class that implements an iterator has two pieces:

1. [Implementing Class]:

lterators

Every class that implements an iterator has two pieces:

2. [Implementing Class’ Iterator]:
* Must have the base class: std: : iterator

* std::iterator requires us to minimally implement:

Iterators encapsu

ated access to our data:

)

)

m——

D

oegn

stiList.cpp

OdoO D WNR

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (std::vector<Animal>::iterator it = zoo.begin(); it !'= zoo.end(); it++) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;

}

return 0O;

stiList.cpp

OdoO D WNR

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* none */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (const Animal & animal : zoo) {
std: :cout << animal.name << " " << animal.food << std::endl;
}

return 0;

For Each and Iterators

for (const TYPE & variable : collection) {

/] ...
}

14 | std: :vector<Animal> zoo;

20 | for (const Animal & animal : zoo) {

21 std: :cout << animal .name << " " << animal.food << std::endl;
22 | }

For Each and Iterators

for (const TYPE & variable : collection) {

//

}

14 | std: :vector<Animal> zoo;
20 | for (const Animal & animal : zoo) {
21 std: :cout << animal.name << " " << animal.food << std::endl;
22 | }
J|std: :multimap<sid::string, Animal> zoo;
20 | for (const Animal & animal : zoo) {
21 std: :cout << animal.name << " " << animal.food << std::endl;
22 | }

Trees

“The most important non-linear data
structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

A tree is:

A Rooted Tree

1
ks | i;
e B
o

“Mario Family Line”
<http://limitbreak.gameriot.com/blogs/
Caveat-Emptor/Mario-Family-Line>

http://limitbreak.gameriot.com/blogs/Caveat-Emptor/Mario-Family-Line

THE MAR/O FAM/LY LINE

---------—-1

DPONKEY KONG DONKEY KONG JR.
ARCADE, 198! ARCADE, 1982

MARIC BROS. MARIO'S BOMES AwaY MARIC'S CEMENT FACTORY
ARCADE, 1983 GAME ANDG WATCH, 1983 GAME ANG WATCH, 1983

WRECKING CREW PINSBALL SUPER MARIO BROS, PUNCH BALL MARIO BROS. MARIO BROS. SPECIAL
NES, 1985 wEs, 19849 NES, 1985 NEC PO-BBO!. 1984 wec pe-8801, 1984

8 xnvarez B
o5

WRECKING CREW '98
SUPER FAMICOM, 1998

\MARIO BROS:

” i
R0l X >
{REERD DT TVIE » N $ =
B PerVINITARLL ° Rt b : —
® (000 ImTuls - o
L . & 0N MG MDY
SUPER MARIC RPG: LEGEND OF THE SEYEN STARS UNDRAKE 30 SAME GAME MARIC'S TENNIS MARIC CLASH
SNES, 1996 Pr, 1995 SUPER FAMICOM SATELLAVIEW, 1995 VIRTU AL BOY. 1995 VIRTU AL 8OY, I

o x
Powerr Yt

: -l
MARIC TENN/S MARIO TENNIS MHRARIO TENNIS: POWER TOUR

NINTENDO 64, 2000 GAME BOY COLOR, 2000 WNINTENGO G AMECUBE, 2004 GAME BOY ADYANGE, 2005 WARID LANCR BIPER MADO o 3

GAME 8CY, 1994

w== |
VIRTU AL BOY WARIC LAND waRIC Lane . WARIO LANG: THE SHAKE DIMENSION WARIO
YIRTUAL BOY, 1996 GAME BoY, 1998 GAME BOY COLOR, 2000 GAME BOY 20y 2NCE, 2007 NINTENDO GAMECUBE, 2003 WINTENDO DS, 2007 wit, 2008

2
SUPER MARIOC 4 PS
MARIO MIX GAME BOY ACYANCE, 2003 NINTENDC £8, 2006 GAME BOY ADYANCE, 2004 NINTENDO £S5, 2009

MARIC AND LIG: SUFPERSTAR SAGA NEW SUPER MARIC BROS. MARIC PINBALL LANG

NINTENDO GAMECU8E, 20056

UPER SLUGGERS

U 2008 NINTENGC £S5, 2005 BOWSER'S INSIOE STORY
NINTENDO £S5, 2009

MARIC AND LUIGIT PARTNERS IN TIME MARIO ANG LUIGT

SUPER MARIC GALAXY
wrl, 2007

More Specific Trees

We'll focus on binary trees:

* A binary tree is rooted — every node can be reached via
a path from the root

More Specific Trees

We'll focus on binary trees:

* A binary tree is acyclic — there are no cycles within the
graph

More Specific Trees

We'll focus on binary trees:

* A binary tree contains two or fewer children — where
one is the “left child” and
one is the “right child”:

Tree Terminology

* What’s the longest English word you can make using the
vertex labels in the tree (repeats allowed)?

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

 Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? e
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
* List all the verticesis b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

 Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? e
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
* List all the verticesis b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

 Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? e
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
* List all the verticesis b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

 Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? e
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
* List all the verticesis b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

 Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? e
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
* List all the verticesis b’s left subtree.

e List all the leaves in the tree.

Binary Tree — Defined

A binary tree T is either:

OR

Tree Property: height

height(T): length of the longest path G
from the root to a leaf

Given a binary tree T: ° a

height(T) =

Tree Property: full
A tree Fis full if and only if:

1.

2.

Tree Property: perfect
A perfect tree P is: 0

1. (s) (X)
2. (&) ()(2) ()

Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For any level k in
[0, h-1], k has 2X nodes. For level h, all OJOON0O

nodes are “pushed to the left”.

Tree Property: complete

A complete tree C of height h, C,:
1.C,={}
2. C, (where h>0) = {r, T, Tz} and either:

T is and Tg is

OR

T, is and Tg is

Tree Property: complete
Is every full tree complete? 0

OJOONO
ONO,

If every complete tree full?

