CS 225

Data Structures

October 12 — AVL Analysis

Wade Fagen-Ulmschneider

_insert(6.5)

Insertion into an AVL Tree

Insert (pseudo code):

1: Insert at proper place

2: Check for imbalance

3: Rotate, if necessary

4: Update height °

struct TreeNode {
T key;

unsigned height;

TreeNode *left;
TreeNode *right;

o L1 WDN R

iy

O oYU WN R

template <class T> void AVLTree<T>:: insert(const T & x, treeNode<T> * & t) ({
if(£t == NULL) {
t = new TreeNode<T>(x, 0, NULL, NULL);

else if(x < t->key) {
_insert(x, t->left);
int balance = height (t->right) - height(t->left);
int leftBalance = height(t->left->right) - height(t->left->left);

if (balance == -2) {
if (leftBalance == -1) { rotate (t); }
else { rotate (t), }

else if(x > t->key) {
_insert(x, t->right);
int balance = height(t->right) - height(t->left);
int rightBalance = height (t->right->right) - height(t->right->left) ;
if(balance == 2) {
if(rightBalance == 1) { rotate (t); }
else { rotate (t), }

t->height = 1 + max(height(t->left), height(t->right)) ;

SRolohS
olollolNC

AVL Tree Analysis

We know: insert, remove and find runs in:

We will argue that: h is

AVL Tree Analysis
Definition of big-O:

...0r, with pictures:

A

h, height

>
n, number of nodes

AVL Tree Analysis

A

h, height

>
L | |
{ n, number of nodes

*The height of the tree, f(n), will always be less than
¢ x g(n) for all values where n > k.

AVL Tree Analysis

(7]
v
S
A 2 4
ofd
b= ©
20 ~
] v
< E
N >
c
c

L | > >
{ n, number of nodes h, height

AVL Tree Analysis

>

A

h, height
n, number of nodes

\

L | | > >
/ n, number of nodes h, height

*The number of nodes in the tree, f1(h), will always
be greater than ¢ x g't(h) for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes
the smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h)=1+ N(h-1)+ N(h -2)

State a Theorem
Theorem: An AVL tree of height h has at least

Proof:
|. Consider an AVL tree and let h denote its height.

. Case:

An AVL tree of height has at least nodes.

Prove a Theorem

1. Case:

An AVL tree of height has at least nodes.

Prove a Theorem

V. Case:
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height has at least nodes.

Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:

Summary of Balanced BST

Red-Black Trees
- Max height: 2 * Ig(n)
- Constant number of rotations on insert, remove, and find

AVL Trees
- Max height: 1.44 * Ig(n)
- Rotations:

Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:

