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_insert(6.5)

Insertion into an AVL Tree

Insert (pseudo code):

1: Insert at proper place

2: Check for imbalance

3: Rotate, if necessary

4: Update height °

struct TreeNode {
T key;

unsigned height;

TreeNode *left;
TreeNode *right;
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template <class T> void AVLTree<T>:: insert(const T & x, treeNode<T> * & t ) ({
if( £t == NULL ) {
t = new TreeNode<T>( x, 0, NULL, NULL);

else if( x < t->key ) {
_insert( x, t->left );
int balance = height (t->right) - height(t->left);
int leftBalance = height(t->left->right) - height(t->left->left);

if ( balance == -2 ) {
if ( leftBalance == -1 ) { rotate (t); }
else { rotate (t ), }

else if( x > t->key ) {
_insert( x, t->right );
int balance = height(t->right) - height(t->left);
int rightBalance = height (t->right->right) - height(t->right->left) ;
if( balance == 2 ) {
if( rightBalance == 1 ) { rotate (t); }
else { rotate (t ), }

t->height = 1 + max(height(t->left), height(t->right)) ;
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AVL Tree Analysis

We know: insert, remove and find runs in:

We will argue that: h is




AVL Tree Analysis
Definition of big-O:

...0r, with pictures:
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h, height

>
n, number of nodes




AVL Tree Analysis
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h, height
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*The height of the tree, f(n), will always be less than
¢ x g(n) for all values where n > k.




AVL Tree Analysis
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AVL Tree Analysis
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h, height
n, number of nodes
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/ n, number of nodes h, height

*The number of nodes in the tree, f1(h), will always
be greater than ¢ x g't(h) for all values where n > k.




Plan of Action

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes
the smallest number of nodes in an AVL tree of height h:




Simplify the Recurrence
N(h)=1+ N(h-1)+ N(h -2)




State a Theorem
Theorem: An AVL tree of height h has at least

Proof:
|. Consider an AVL tree and let h denote its height.

. Case:

An AVL tree of height has at least nodes.




Prove a Theorem

1. Case:

An AVL tree of height has at least nodes.




Prove a Theorem

V. Case:
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height has at least nodes.




Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:




Summary of Balanced BST

Red-Black Trees
- Max height: 2 * Ig(n)
- Constant number of rotations on insert, remove, and find

AVL Trees
- Max height: 1.44 * Ig(n)
- Rotations:




Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:




Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:




