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Range-based Searches
Balanced BSTs are useful structures for range-based and 
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55



Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?
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Running Time
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Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle:
[  (x1, y1),  (x2, y2)  ]?

Q:  What is the nearest point to (x1, y1)?
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Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Space divisions:
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Range-based Searches
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kD-Trees
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kD-Trees
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CS 225 – Midpoint Grade Update



B-Trees



B-Trees
Q: Can we always fit our data in main memory?

Q: Where else can we keep our data?

However, big-O assumes uniform time for all operations.



Vast Differences in Time
A 3GHz CPU performs 3m operations in _______.

Old Argument: “Disk Storage is Slow”
- Bleeding-edge storage is pretty fast:

NVMe (M.2, PCIe 3.0 x4):

- Large Disks (25 TB+) still have slow throughout:

New Argument: “The Cloud is Slow!”
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AVLs on Disk



Real Application
Imagine storing driving records for everyone in the US:

How many records?

How much data in total?

How deep is the AVL tree?



BTree Motivations
Knowing that we have large seek times for data, we want 
to:



BTree (of order m)

Goal: Minimize the number of reads!
Build a tree that uses  ______________________ / node

[1 network packet]
[1 disk block]

-3 8 23 25 31 42 43 55
m=9



BTree Insertion
A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

m=5



BTree Insertion
When a BTree node reaches m keys:

m=5



BTree Recursive Insert
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BTree Recursive Insert
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BTree Visualization/Tool
https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html


Btree Properties
A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

- All internal nodes have exactly one more key than children
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.

- All leaves are on the same level



BTree Search
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BTree Search
bool Btree::_exists(BTreeNode & node, const K & key) {

unsigned i;

for ( i = 0; i < node.keys_ct_ && key < node.keys_[i]; i++) { }

if ( i < node.keys_ct_ && key == node.keys_[i] ) {

return true;

}

if ( node.isLeaf() ) {

return false;

} else {

BTreeNode nextChild = node._fetchChild(i);

return _exists(nextChild, key);

} 

}
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BTree Analysis
The height of the BTree determines maximum number of 
____________ possible in search data.

…and the height of the structure is: ______________.

Therefore: The number of seeks is no more than __________.

…suppose we want to prove this!



BTree Analysis
In our AVL Analysis, we saw finding an upper bound on the 
height (given n) is the same as finding a lower bound on the 
nodes (given h).

We want to find a relationship for BTrees between the 
number of keys (n) and the height (h).


