
CS 225
Data Structures

October 17 – kd-Tree and Btrees Intro
Wade Fagen-Ulmschneider

Range-based Searches
Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55

Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Running Time

6

3 11

33

44

41

3 6 11 33 41 44

55

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle:
[(x1, y1), (x2, y2)]?

Q: What is the nearest point to (x1, y1)?

p1

p2

p4

p3

p7

p5 p6

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Space divisions:

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

kD-Trees

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

kD-Trees

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

CS 225 – Midpoint Grade Update

B-Trees

B-Trees
Q: Can we always fit our data in main memory?

Q: Where else can we keep our data?

However, big-O assumes uniform time for all operations.

Vast Differences in Time
A 3GHz CPU performs 3m operations in _______.

Old Argument: “Disk Storage is Slow”
- Bleeding-edge storage is pretty fast:

NVMe (M.2, PCIe 3.0 x4):

- Large Disks (25 TB+) still have slow throughout:

New Argument: “The Cloud is Slow!”

5

3 6

4

2

8

10

9 12

111 7

AVLs on Disk

Real Application
Imagine storing driving records for everyone in the US:

How many records?

How much data in total?

How deep is the AVL tree?

BTree Motivations
Knowing that we have large seek times for data, we want
to:

BTree (of order m)

Goal: Minimize the number of reads!
Build a tree that uses ______________________ / node

[1 network packet]
[1 disk block]

-3 8 23 25 31 42 43 55
m=9

BTree Insertion
A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

m=5

BTree Insertion
When a BTree node reaches m keys:

m=5

BTree Recursive Insert

-3 8

23

25 31

42

43 55

m=3

BTree Recursive Insert

-3 8

23

25 31

42

43 55

m=3

BTree Visualization/Tool
https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Btree Properties
A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

- All internal nodes have exactly one more key than children
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.

- All leaves are on the same level

BTree Search

-3

8

23

25 31

42

43

55

-11 60

BTree Search
bool Btree::_exists(BTreeNode & node, const K & key) {

unsigned i;

for (i = 0; i < node.keys_ct_ && key < node.keys_[i]; i++) { }

if (i < node.keys_ct_ && key == node.keys_[i]) {

return true;

}

if (node.isLeaf()) {

return false;

} else {

BTreeNode nextChild = node._fetchChild(i);

return _exists(nextChild, key);

}

}

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-3

8

23

25 31

42

43

55

-11 60

BTree Analysis
The height of the BTree determines maximum number of
____________ possible in search data.

…and the height of the structure is: ______________.

Therefore: The number of seeks is no more than __________.

…suppose we want to prove this!

BTree Analysis
In our AVL Analysis, we saw finding an upper bound on the
height (given n) is the same as finding a lower bound on the
nodes (given h).

We want to find a relationship for BTrees between the
number of keys (n) and the height (h).

