CS 225

Data Structures

November 7 — Disjoint Sets Implementaiton
Wadle Fagen-Ulmschneider

Disjoint Sets

Key Ideas:
* Each element exists in exactly one set.

* Every set is an equitant representation.
e Mathematically: 4 € [0]; = 8 € [0];
* Programmatically: find(4) == find(8)

Implementation #1

D> > @&

Find(k):

Union(k1, k2):

Implementation #2

* We will continue to use an array where the index is the
key

* The value of the array is:
e -1, if we have found the representative element
* The index of the parent, if we haven’t found the rep. element

+ We will call theses UpTrees: 1 1 1 1
0 | 1]2)3

-1|-1|-1|-1

Disjoint Sets

@

Disjoint Sets Find

1| Int DisjointSets::find() {

2 iIT (s[i] <0) { return 1; }
3 else { return find(s[i]); }
4}

Running time?

What is the ideal UpTree?

Disjoint Sets Union

void DisjointSets::union(int rl1, int r2) {

A OWNER

}

Disjoint Sets — Union

10

11

10

Disjoint Sets — Smart Union

Union by height | 0 1 2 3 | 4 5 6 | 7 8 | 9 | 10 | 11 | Idea: Keep the height of

the tree as small as
6 | 6 6 8 10 | 7 7 17 | 4 | 5 | possible.

Disjoint Sets — Smart Union

Unionbyheight | 0 | 1 | 2 | 3 | 4 | 5| 6

Union by size

8 10 | 11
6 6 6 8 10 7 7 4 5
0 1 2 3 4 5 6 8 10 | 11
6 6 6 8 10 | 7 7 4 5

Both guarantee the height of the tree is:

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Disjoint Sets Find

1| Int DisjointSets::find(int 1) {

2 iIT (s[i] <0) { return 1; }

3 else { return _find(s[i]); }

41%

1| void DisjointSets::unionBySize(int rootl, int root2) {
2 Int newSize = arr_[rootl] + arr_[root2];

3

4 // 1Tt arr_[rootl] is less than (more negative), it iIs the larger set;
5 // we union the smaller set, root2, with rootl.

6 iIT (arr_[rootl] < arr_[root2]) {

I arr_[root2] = rootl;

8 arr_[rootl] = newSize;

91 ¥
10
11 // Otherwise, do the opposite:
12 else {
13 arr_[rootl] = root2;
14 arr_[root2] = newSize;
15 }
16 | }

Path Compression

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log®(n) =
0 ,n<1
1+ log*(log(n)),n>1

What is Ig*(26°°36)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O),

where n is the number of items in the Disjoint Sets.

	CS 225
	Disjoint Sets
	Implementation #1
	Implementation #2
	UpTrees
	Disjoint Sets
	Disjoint Sets Find
	Disjoint Sets Union
	Disjoint Sets – Union
	Disjoint Sets – Smart Union
	Disjoint Sets – Smart Union
	Disjoint Sets Find
	Path Compression
	Disjoint Sets Analysis
	Disjoint Sets Analysis

