CS 225

Data Structures

November 12 – Graphs Wade Fagen-Ulmschneider

Graphs

To study all of these structures: 1. A common vocabulary

2. Graph implementations

3. Graph traversals

4. Graph algorithms

Graph Vocabulary

```
G = (V, E)
|V| = n
|E| = m
                     (2, 5)
```

Degree(v): ||

Adjacent Vertices: A(v) = { x : (x, v) in E }

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary


```
Subgraph(G):

G' = (V', E'):

V' \in V, E' \in E, \text{ and}

(u, v) \in E \rightarrow u \in V', v \in V'
```

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? Minimum edges:

Not Connected:

Connected*:

Maximum edges:

Simple:

Not simple:

$$\sum_{v \in V} \deg(v) =$$

Connected Graphs

Proving the size of a minimally connected graph

Theorem:

Every minimally connected graph **G=(V, E)** has **|V|-1** edges.

Thm: Every minimally connected graph **G=(V, E)** has **|V|-1** edges.

Proof: Consider an arbitrary, minimally connected graph **G=(V, E)**.

Lemma 1: Every connected subgraph of **G** is minimally connected. (Easy proof by contradiction left for you.)

Suppose |**V**| = **1**:

Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: |V| -1 edges \rightarrow 1-1 = 0.

Inductive Hypothesis: For any j < |V|, any minimally connected graph of j vertices has j-1 edges.

Suppose |**V**| > **1**:

1. Choose any vertex:

2. Partition:

Suppose |**V**| > **1**:

3. Count the edges

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

insertVertex(K key);

removeVertex(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

Graph Implementation: Adjacency Matrix

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

