CS 2) #7: Inheritance Adding overloaded operators to Cube:
2’ \5 September 11, 2019 - G Carl Evans Cube.h Cube . cpp

1 | #pragma once w | /* L %/
Destructor 2 40
The last and final member function called in the lifecycle of a class is 3 | class Cube { 41
4 public: 42

the destructor.

// ... 43
10 44
Purpose of a destructor: 11 45
12 46
13 47
) 14 48

The automatic destructor: /). g

1. Like a constructor and copy constructor, an automatic

destructor exists only when no custom destructor is defined.

One Very Powerful Operator: Assignment Operator
2. [Invoked]:

Cube.h

‘ Cube & operator=(const Cube & other);

3. [Functionality]: Cube. cpp
‘ Cube & Cube::operator=(const Cube & other) { ... }

Custom Destructor: Functionality Table:
Cube.h : s
ST olsss Cobe | Copies an object Dl;3§tr0ys an
6 public: object
7 Cube () ; // default ctor
8 Cube (double length); // l-param ctor Copy constructor
9 Cube (const Cube & other); // custom copy ctor .
10 ~Cube () ; // destructor, or dtor Assignment operator
11 e
...necessary if you need to delete any heap memory! Destructor

Overloading Operators

C++ allows custom behaviors to be defined on over 20 operators: The Rule of Three
Arithmetic ¥ - * / % ++ -- If it is necessary to define any one of these three functions in a class, it
Bitwise & | A~ ~ << > will be necessary to define all three of these functions:
Assignment = 1
Comparison = I= > < >= <=
Logical 'oss || 5.
Other mn o ->

General Syntax:

Inheritance

In nearly all object-oriented languages (including C++), classes can be
extended to build other classes. We call the class being extended the
base class and the class inheriting the functionality the derived
class.

Base Class: Shape

Calling Base Class Constructors (Initializer List!)

Square.h
6 public:
7 Square (double length) ;
Square.cpp
6| Square: : Square (double length) Shape (length) { }

Shape.h

O owJdo Ul

10
11
12

class Shape {
public:
Shape () ;
Shape (double length) ;
double getLength() const;

private:
double length_;
}:

Functions: virtual and pure virtual
e The virtual keyword:

Derived Class: square

Square.h

1 | #pragma once

2

3 | #include "Shape.h"

4

5 | class Square {
6 public:

7 double getArea() const;

8

9 private:
10 // Nothing!
11 | };

Cube. cpp RubikCube. cpp

Cube::print_1() {
cout << "Cube" << endl;
}

// No print 1()

Cube::print_2() {
cout << "Cube" << endl;
} }

RubikCube: :print 2() {
cout << "Rubik" << endl;

virtual Cube::print 3() {
cout << "Cube" << endl;
}

// No print_3()

virtual Cube::print 4() { RubikCube: :print 4() {
cout << "Cube" << endl; cout << "Rubik" << endl;
} }

// In .h file: RubikCube: :print_5() {

In the above code, Square is derived from the base class Shape:

All public functionality of shape is part of square:

main.cpp

int main() {
Square sq;
sq.getLength(); // Returns 1, the len init’d
// by Shape’s default ctor

00 JoyWn

virtual Cube::print_5() = 0; cout << "Rubik" << endl;
}

RubikCube rc;

Cube c; RubikCube c; Cube &c = rc;
c.print_1();
c.print_2();
c.print_3();
c.print_4();
c.print 5();

CS 225 — Things To Be Doing:

[Private Members of Shape]:

1. Theory Exam #1 starts tomorrow!
2. lab_memory this week in labs (due Sunday)
3. MP2 released (EC due Monday)

4. Daily POTDs every M-F for daily extra credit!

