CS 2 #8: Templates
2/ \5 September 13, 2019 - G Carl Evans
Assignment Operator — Self Destruction
e Programmers are sometimes not perfect Consider the

following;:
assignmentOpSelf.cpp
1 | #include "Cube.h"
2
3 | int main() {
4 cs225: :Cube c(10);
5 c =c;
6 return 0;
711}

e Ensure your assignment operator doesn’t self-destroy:

Cube . cpp

1 | #include "Cube.h"

40 | Cube& Cube: :operator=(const Cube &other) {
41 if (&other !'= this) {

42 _destroy() ;
43 _copy (other) ;
44 }
45 return *this;
46 | }

Inheritance

In nearly all object-oriented languages (including C++), classes can be
extended to build other classes. We call the class being extended the
base class and the class inheriting the functionality the derived
class.

In the above code, Square is derived from the base class Shape:

¢ All public functionality of Shape is part of Square:

main.cpp

int main() {
Square sq;

0 J oy U

sq.getLength(); // Returns 1, the len init’d

// by Shape’s default ctor

e [Private Members of Shape]:

Shape.h Square.h
class Shape ({ #include "Shape.h"
public:
Shape () ; class Square : public Shape
Shape (double length) ; {

double getLength() const; public:
double getArea() const;
private:
double length_; private:
}i // Nothing!

};

Virtual
e The virtual keyword allows us to override the behavior of a
class by its derived type.
Example:
Cube.cpp RubikCube.cpp

Cube::print_1() {
cout << "Cube" << endl;
}

Cube::print_2() {
cout << "Cube" << endl;
}

virtual Cube::print 3() {
cout << "Cube" << endl;
}

virtual Cube::print 4() {
cout << "Cube" << endl;
}

// In .h file:

// No print_1()

RubikCube: :print 2() {
cout << "Rubik" << endl;
}

// No print_3()

RubikCube: :print 4() {
cout << "Rubik" << endl;
}

RubikCube: :print_5() {

virtual print_5() = 0; cout << "Rubik" << endl;
}

RubikCube rc;

Cube c; RubikCube c; Cube &c = rc;
c.print_1();
c.print 2();
c.print _3();
c.print _4();
c.print 5();

Polymorphism
Object-Orientated Programming (OOP) concept that a single object
may take on the type of any of its base types.
¢ A RubikCube may polymorph itself to a Cube
e A Cube cannot polymorph to be a RubikCube (base types
only)

Abstract Class Animal
In our animal shelter, Animal is an abstract class:

Why Polymorphism? Suppose you're managing an animal
shelter that adopts cats and dogs:

Option 1 — No Inheritance

animalShelter.cpp

1 | Cat & AnimalShelter::adopt() { ... }
2 | Dog & AnimalShelter::adopt() { ... }
3| ...

Option 2 — Inheritance

animalShelter.cpp

1] Animal & AnimalShelter::adopt() { ... }

Abstract Data Types (ADT):

List ADT - Purpose Function Definition

List Implementation
What types of List do we want?

Pure Virtual Methods
In Cube, print_5() is a pure virtual method:

Cube.h

1 [virtual Cube::print 5() = 0;

A pure virtual method does not have a definition and makes the class
and abstract class.

Abstract Class:

1. [Requirement]:

2. [Syntax]:

3. [Asaresult]:

Templates in C++

Two key ideas when using templates in C++:
1.
2.

Templated Functions:

functionTemplatel.cpp

T maximum(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

o WNR

CS 225 — Things To Be Doing:

Theory Exam #1 is ongoing; ensure you take it!

MP2 due Sept. 23 (10 days), EC deadline in 3 days!

Lab Extra Credit > Attendance in your registered lab section!
Daily POTDs

RNl

