

#32: Disjoint Sets Finale + Graphs Intro
November 6, 2019 · G Carl Evans

Implementation – DisjointSets::union

DisjointSets.cpp (partial)
1
2
3
4

void DisjointSets::union(int r1, int r2) {

}

How do we want to union the two UpTrees?

Building a Smart Union Function

The implementation of this visual model is the following:

6 6 6 8 -1 10 7 -1 7 7 4 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

What are possible strategies to employ when building a “smart
union”?

Smart Union Strategy #1: _________________
Idea: Keep the height of the tree as small as possible!

Metadata at Root:

After union(4, 7):

6 6 6 8 10 7 7 7 4 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Smart Union Strategy #2: ________________
Idea: Minimize the number of nodes that increase in height.
(Observe that the tree we union have all their nodes gain in height.)

Metadata at Root:

After union(4, 7):

6 6 6 8 10 7 7 7 4 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Smart Union Implementation:

DisjointSets.cpp (partial)
1
2
3
4
5
6
7
8
9

void DisjointSets::unionBySize(int root1, int root2) {
 int newSize = arr_[root1] + arr_[root2];

 if (arr_[root1] < arr_[root2]) {
 arr_[root2] = root1; arr_[root1] = newSize;
 } else {
 arr_[root1] = root2; arr_[root2] = newSize;
 }
}

How do we improve this?

DisjointSets.cpp (partial)
1
2
3
4

int DisjointSets::find(int i) {
 if (arr_[i] < 0) { return i; }
 else { return _find(arr_[i]); }
}

DisjointSets.cpp (partial)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void DisjointSets::unionBySize(int root1, int root2) {
 int newSize = arr_[root1] + arr_[root2];

 // If arr_[root1] is less than (more negative), it is the
 // larger set; we union the smaller set, root2, with root1.
 if (arr_[root1] < arr_[root2]) {
 arr_[root2] = root1;
 arr_[root1] = newSize;
 }
 // Otherwise, do the opposite:
 else {
 arr_[root1] = root2;
 arr_[root2] = newSize;
 }
}

Running Time:

• Worst case running time of find(k):

• Worst case running time of union(r1, r2), given roots:

• New function: “Iterated Log”:

 log*(n) :=

• Overall running time:
o A total of m union/find operation runs in:

A Review of Major Data Structures so Far

Array-based List/Pointer-based
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

- Singly Linked List
- Doubly Linked List
- Skip Lists
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

An Introduction to Graphs

Motivation:
Graphs are awesome data structures that allow us to represent an
enormous range of problems. To study these problems, we need:

1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

CS 225 – Things To Be Doing:

1. Theory Exam 3 starts Thursday; Practice Exam Available!
2. MP5 due tonight at 11:59pm
3. Lab Section: lab_puzzles coming up this week in lab!
4. Daily POTDs are ongoing!

