CS 225

Data Structures

Sept. 26 — Trees

Wade Fagen-Ulmschneider



Iterators

Suppose we want to look through every element in our
data structure:




Iterators encapsulated access to our data:
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Iterators

Every class that implements an iterator has two pieces:

1. [Implementing Class]:



Iterators

Every class that implements an iterator has two pieces:

2. [Implementing Class’ Iterator]:
* Must have the base class: std: :iterator

* std::iterator requires us to minimally implement:



Iterators encapsulated access to our data:
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Cube rubix;

RubikCube.cpp
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LEAK SUMMARY :
definitely lost: 512 bytes in 1 blocks
indirectly lost: 1,872 bytes in 9 blocks

possibly lost: © bytes in © blocks
still reachable: 0 bytes in © blocks
suppressed: 0 bytes in 0 blocks
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*Hits CTRL + S to save code*
*2 seconds later*

My brain:

do it again



Use the sticker
program to create art

Use the sticker
program to make
memes

Use the sticker
program to make
memes about other
people making memes
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stiList.cpp

WO JoUld WDNER

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(g) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for ( std::vector<Animal>::iterator it = zoo.begin(); it '= zoo.end(); it++ ) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;

}

return O;
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#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
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std: :cout << (*it) .name << " " << (*it).food << std::endl;
}
return O;
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#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food) , big(big) { /* none */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(g) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for ( const Animal & animal : zoo ) {
std: :cout << animal.name << " " << animal.food << std::endl;

}

return O;




For Each and Iterators

for ( const TYPE & variable : collection ) {

//
}

14 | std: :vector<Animal> zoo;

20| for ( const Animal & animal : zoo ) {

21 std: :cout << animal .name << " " << animal.food << std::endl;
22 |}




For Each and Iterators

for ( const TYPE & variable
//

collection ) {

}

14

21
22

20

std: :vector<Animal> zoo;

for ( const Animal & animal zoo ) {
std: :cout << animal .name << " " << animal.food << std::endl;
}

20
21
22

4| std: imultimap<sid::string, Animal> zoo;

for ( const Animal & animal zoo ) {
std: :cout << animal .name << " " << animal.food << std::endl;
}




Trees

“The most important non-linear data
structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

A tree is:
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More Specific Trees

We'll focus on binary trees:

* A binary tree is rooted — every node can be reached via
a path from the root




More Specific Trees

We'll focus on binary trees:

* A binary tree is acyclic — there are no cycles within the
graph




More Specific Trees

We'll focus on binary trees:

* A binary tree contains two or fewer children — where
one is the “left child” and

one is the “right child”:




Tree Terminology

* What's the longest English word you can make using the
vertex labels in the tree (repeats allowed)?




Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

* Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? (2
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
 List all the vertices is b’s left subtree.

e List all the leaves in the tree.
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Binary Tree — Defined

A binary tree T is either:

OR



Tree Property: height

height(T): length of the longest path G
from the root to a leaf

Given a binary tree T: ° a

height(T) =



Tree Property: full
A tree Fis full if and only if:

1.

2.



Tree Property: perfect
A perfect tree P is: G

1. (s ) (x)
2. (n) (D)) (5



Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For any level k in
[0, h-1], k has 2X nodes. For level h, all
nodes are “pushed to the left”.



Tree Property: complete

A complete tree C of height h, C;;:
1. C_1 - {}
2. C;, (where h>0) = {r, T, Tz} and either:

T, is and Tg is

OR

T, is and Tg is




Tree Property: complete
Is every full tree complete? G
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If every complete tree full?



