CS 225

Data Structures

Sept. 26 — Trees

Wade Fagen-Ulmschneider

Iterators

Suppose we want to look through every element in our
data structure:

Iterators encapsulated access to our data:

I

I

N T

__-—»Qj ListNode *

index

(x, y, z)

Iterators

Every class that implements an iterator has two pieces:

1. [Implementing Class]:

Iterators

Every class that implements an iterator has two pieces:

2. [Implementing Class’ Iterator]:
* Must have the base class: std: :iterator

* std::iterator requires us to minimally implement:

Iterators encapsulated access to our data:

I

I

osgn s

Cube rubix;

RubikCube.cpp

/3

;:a\§‘
|

A\
g\

LEAK SUMMARY :
definitely lost: 512 bytes in 1 blocks
indirectly lost: 1,872 bytes in 9 blocks

possibly lost: © bytes in © blocks
still reachable: 0 bytes in © blocks
suppressed: 0 bytes in 0 blocks

CS @ ILLINOIS

COMPUTER SCIENCE

ECE

[llinois

DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Hits CTRL + S to save code
2 seconds later

My brain:

do it again

Use the sticker
program to create art

Use the sticker
program to make
memes

Use the sticker
program to make
memes about other
people making memes

e £ 5 -

- f

stiList.cpp

WO JoUld WDNER

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(g) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (std::vector<Animal>::iterator it = zoo.begin(); it '= zoo.end(); it++) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;

}

return O;

stiList.cpp

WO JoUld WDNER

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(g) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (auto it = zoo.begin(); it '= zoo.end(); it++) {

std: :cout << (*it) .name << " " << (*it).food << std::endl;
}
return O;

stiList.cpp

WO JoUld WDNER

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food) , big(big) { /* none */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(g) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (const Animal & animal : zoo) {
std: :cout << animal.name << " " << animal.food << std::endl;

}

return O;

For Each and Iterators

for (const TYPE & variable : collection) {

//
}

14 | std: :vector<Animal> zoo;

20| for (const Animal & animal : zoo) {

21 std: :cout << animal .name << " " << animal.food << std::endl;
22 |}

For Each and Iterators

for (const TYPE & variable
//

collection) {

}

14

21
22

20

std: :vector<Animal> zoo;

for (const Animal & animal zoo) {
std: :cout << animal .name << " " << animal.food << std::endl;
}

20
21
22

4| std: imultimap<sid::string, Animal> zoo;

for (const Animal & animal zoo) {
std: :cout << animal .name << " " << animal.food << std::endl;
}

Trees

“The most important non-linear data
structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

A tree is:

& o Eﬁﬁg “Mario Family Line”
|| e us <http://limitbreak.gameriot.com/blogs/

Caveat-Emptor/Mario-Family-Line>

http://limitbreak.gameriot.com/blogs/Caveat-Emptor/Mario-Family-Line

THE MAR/IO FAM/LY LINE

DONKEY KONG DPONKEY KONWNG JR.
“RCADE, 198! ARCADE, 1982

R
MARIC'S BOMES AWAY
GAME AND WATCH, 1983

MARIC'S CEMENT FACTORY
GAME AND WATCH, 1983

WRECKING CREW

PINSALL SUPER MARIO BROS. PUNCH BALL MARIO BROS. MARIO BROS. SPECIAL
nES, 1985 wES, 19849 NES, 1985 wEC PC-BBOL. 1984 wEC PC-BBOI, 1984
8 e B
-

WRECKING CREW 98
SUPER FAMICOM, 1998

e

A0 BROS,

GAMECUBE, 2005

WPER SLUGGERS
. 2008

MARIO MIX GAME BOY ADYANCE, 2003
WINTENDO GAMECUBE, 2005 I

MARIO AND LUIGI PARTNERS IN TIME MARIO AND LIS
NINTENDC OS5, 2005 BOWSER'S INSIDE STORY
NINTENDO §3, 2009

rTeoDS,

NEW SUPER MARIC BROS.
NINTENDO OS, 2006

SUPER MARIC GALAXY

wii. 2007

—
MARIO PINBALL LAND
GAME BOY ADYANCE, 2004

SUPER MARIC 4 DS
NINTENDO £S, 2009

More Specific Trees

We'll focus on binary trees:

* A binary tree is rooted — every node can be reached via
a path from the root

More Specific Trees

We'll focus on binary trees:

* A binary tree is acyclic — there are no cycles within the
graph

More Specific Trees

We'll focus on binary trees:

* A binary tree contains two or fewer children — where
one is the “left child” and

one is the “right child”:

Tree Terminology

* What's the longest English word you can make using the
vertex labels in the tree (repeats allowed)?

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

* Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? (2
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
 List all the vertices is b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

* Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? (2
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
 List all the vertices is b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

* Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? (2
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
 List all the vertices is b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

* Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? (2
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
 List all the vertices is b’s left subtree.

e List all the leaves in the tree.

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

* One of the vertices is called the root of the tree. Which one?

* Make an “word” containing the names of the vertices that
have a parent but no sibling.

* How many parents does each vertex have?
* Which vertex has the fewest children? (2
* Which vertex has the most ancestors?

* Which vertex has the most descendants?
 List all the vertices is b’s left subtree.

e List all the leaves in the tree.

Binary Tree — Defined

A binary tree T is either:

OR

Tree Property: height

height(T): length of the longest path G
from the root to a leaf

Given a binary tree T: ° a

height(T) =

Tree Property: full
A tree Fis full if and only if:

1.

2.

Tree Property: perfect
A perfect tree P is: G

1. (s) (x)
2. (n) (D)) (5

Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For any level k in
[0, h-1], k has 2X nodes. For level h, all
nodes are “pushed to the left”.

Tree Property: complete

A complete tree C of height h, C;;:
1. C_1 - {}
2. C;, (where h>0) = {r, T, Tz} and either:

T, is and Tg is

OR

T, is and Tg is

Tree Property: complete
Is every full tree complete? G

OO ONO
» @

If every complete tree full?

