
CS 225
Data Structures

September 28 – Trees
G Carl Evans

Tree Terminology
• Find an edge that is not on the longest path in the tree. Give that edge a

reasonable name.

• One of the vertices is called the root of the tree. Which one?
• Make an “word” containing the names of the vertices that
have a parent but no sibling.
• How many parents does each vertex have?
• Which vertex has the fewest children?
• Which vertex has the most ancestors?
• Which vertex has the most descendants?
• List all the vertices is b’s left subtree.
• List all the leaves in the tree.

b

d

g

h

j

c

e

i

f

a

Binary Tree – Defined
A binary tree T is either:

•

OR

•

A

XS

2

C

2

5

Tree Property: height
height(T): length of the longest path
from the root to a leaf

Given a binary tree T:

height(T) =

A

XS

2

C

2

5

Tree Property: full
A tree F is full if and only if:

1.

2. A

XS

2

C

2

5

Tree Property: perfect
A perfect tree P is defined in terms of
the tree’s height.

Let Ph be a perfect tree of height h, and:

1.

2.

A

XS

2

C

2 5

Tree Property: complete
Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For all levels k in
[0, h-1], k has 2k nodes. For level h, all
nodes are “pushed to the left”.

A

XS

2

C

2 5

Y Z

Tree Property: complete
A complete tree C of height h, Ch:
1. C-1 = {}
2. Ch (where h>0) = {r, TL, TR} and either:

TL is __________ and TR is _________

OR

TL is __________ and TR is _________

A

XS

2

C

2 5

Y Z

Tree Property: complete
Is every full tree complete?

If every complete tree full?
A

XS

3

C

2 5

Y Z

Open Office Hours
CS 225 has over 50 hours of open office hours each
week, lots of time to get help!

Open Office Hours
CS 225 has over 50 hours of open office hours each
week, lots of time to get help!

1. Understand the problem, don’t just give up.
- “I segfaulted” is not enough. Where? Any idea why?

Open Office Hours
CS 225 has over 50 hours of open office hours each
week, lots of time to get help!

2. Your topic must be specific to one function, one test
case, or one exam question.
- Helps us know what to focus on before we see you!
- Helps your peers to ensure all get questions answered!

Open Office Hours
CS 225 has over 50 hours of open office hours each
week, lots of time to get help!

3. Get stuck, get help – not the other way around.
- If you immediately re-add yourself, you’re setting
yourself up for failure.

Open Office Hours
CS 225 has over 50 hours of open office hours each
week, lots of time to get help!

4. Be awesome.

Tree ADT

Tree ADT
insert, inserts an element to the tree.

remove, removes an element from the tree.

traverse,

#pragma once

template <class T>
class BinaryTree {

public:
/* ... */

private:

};

BinaryTree.h
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Trees aren’t new:
C

S X

A 2 2 5

Y

Ø Ø

Ø Ø Ø Ø Ø
ØØ

Trees aren’t new:

A

XS

2

C

2 5

Y

C

S X

A 2 2 5

Y

Ø Ø

Ø Ø Ø Ø Ø
ØØ

How many NULLs?
Theorem: If there are n data items in our representation of
a binary tree, then there are ___________ NULL pointers.

How many NULLs?
Base Cases:

n = 0:

n = 1:

n = 2:

How many NULLs?
Induction Hypothesis:

How many NULLs?
Consider an arbitrary tree T containing n data elements:

Traversals

*-

b

+

/

c

d ea

Traversals

*-

b

+

/

c

d e

template<class T>
void BinaryTree<T>::__Order(TreeNode * root)
{

if (root != NULL) {

______________________;

___Order(root->left);

______________________;

___Order(root->right);

______________________;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

a

Traversals

*-

b

+

/

c

d e

template<class T>
void BinaryTree<T>::__Order(TreeNode * root)
{

if (root != NULL) {

______________________;

___Order(root->left);

______________________;

___Order(root->right);

______________________;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

a

Traversals

*-

b

+

/

c

d e

template<class T>
void BinaryTree<T>::__Order(TreeNode * root)
{

if (root != NULL) {

______________________;

___Order(root->left);

______________________;

___Order(root->right);

______________________;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

a

