

CS 225
Data Structures

October 18 – BTrees
G Carl Evans

B-Tree Motivation
In Big-O we have assumed uniform time for all operations,
but this isn’t always true.

However, seeking data from the cloud may take 40ms+.
…an O(lg(n)) AVL tree no longer looks great:

5

3 6

4

2

8

10

9 12

111 7

Real Application
Imagine storing Instagram profiles for everyone in the US:

How many records?

How much data in total?

How deep is the AVL tree?

BTree Motivations
Knowing that we have large seek times for data, we want
to:

BTree (of order m)

Goal: Minimize the number of reads!
Build a tree that uses ______________________ / node

[1 network packet]
[1 disk block]

-3 8 23 25 31 42 43 55
m=9

BTree Insertion
A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

m=5

BTree Insertion
When a BTree node reaches m keys:

m=5

BTree Recursive Insert

-3 8

23

25 31

42

43 55

m=3

BTree Recursive Insert

-3 8

23

25 31

42

43 55

m=3

BTree Visualization/Tool
https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Btree Properties
A BTrees of order m is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than m-1 nodes.

- All internal nodes have exactly one more key than children
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.

- All leaves are on the same level

BTree

3

17

16

28 488

1 2 6 7 25 26 29 4512 14 52 53 55 68

BTree Search

-3

8

23

25 31

42

43

55

-11 60

BTree Search
bool Btree::_exists(BTreeNode & node, const K & key) {

unsigned i;
for (i = 0; i < node.keys_ct_ && key < node.keys_[i]; i++) { }

if (i < node.keys_ct_ && key == node.keys_[i]) {
return true;

}

if (node.isLeaf()) {
return false;

} else {
BTreeNode nextChild = node._fetchChild(i);
return _exists(nextChild, key);

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

-3

8

23

25 31

42

43

55

-11 60

BTree Analysis
The height of the BTree determines maximum number of
____________ possible in search data.

…and the height of the structure is: ______________.

Therefore: The number of seeks is no more than __________.

…suppose we want to prove this!

BTree Analysis
In our AVL Analysis, we saw finding an upper bound on the
height (given n) is the same as finding a lower bound on the
nodes (given h).

We want to find a relationship for BTrees between the
number of keys (n) and the height (h).

BTree Analysis
Strategy:
We will first count the number of nodes, level by level.

Then, we will add the minimum number of keys per node (n).

The minimum number of nodes will tell us the largest possible
height (h), allowing us to find an upper-bound on height.

BTree Analysis
The minimum number of nodes for a BTree of order m at
each level:

root:

level 1:

level 2:

level 3:
…
level h:

BTree Analysis
The total number of nodes is the sum of all of the levels:

BTree Analysis
The total number of keys:

BTree Analysis
The smallest total number of keys is:

So an inequality about n, the total number of keys:

Solving for h, since h is the number of seek operations:

BTree Analysis
Given m=101, a tree of height h=4 has:

Minimum Keys:

Maximum Keys:

