CS 225

Data Structures

November 6 — Disjoint Sets Finale + Graphs
G Carl Evans

Disjoint Sets

@

Disjoint Sets Find

int DisjointSets::find() {
if (s[i] < 0) { return i; }
else { return find(s[i]); }

}

B W N R

Running time?
Structure: A structure similar to a linked list
Running time: O(h) < O(n)

What is the ideal UpTree?
Structure: One root node with every other node as it’s child

Running Time: O(1) 5)

Disjoint Sets Union

void DisjointSets: :union(int rl, int r2) {

w_WN R

}

Disjoint Sets — Union

00

10

11

10

~N

Disjoint Sets — Smart Union

Union by height

00

10

11

10

~N

Idea: Keep the height of
the tree as small as

possible.

Disjoint Sets — Smart Union

Unionby height | 0 | 1 | 2 | 3

Union by size

4 5 7 8 10 | 11
6 6 6 8 -4 | 10 -3 7 4 5
0 1 2 3 4 5 7 8 10 | 11
6 6 6 8 -4 | 10 -8 7 4 5

Both guarantee the height of the tree is:

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

D

sjoint Sets Find and Union

1| int DisjointSets::find(int i) {

2 if (arr [i] < 0) { return i; }

3 else { return find(arr [i]); }

41}

1 | void DisjointSets: :unionBySize (int rootl, int root2) {
2 int newSize = arr [rootl] + arr [root2];

3

4 // If arr [rootl] is less than (more negative), it is the larger set;
5 // we union the smaller set, root2, with rootl.

6 if (arr [rootl] < arr [root2]) {

7 arr [root2] = rootl;

8 arr [rootl] = newSize;

9 }
10
11 // Otherwise, do the opposite:
12 else {
13 arr [rootl] = root2;
14 arr [root2] = newSize;
15 }

}

Path Compression

Disjoint Sets Find with Compression

©W oo JdJo Ol WN R

RRRRRRR
aoUldWwNRO

int DisjointSets::find(int i) {

}

// At root return the index
if (arr [i] < 0) {
return i;

}

// If not at the root recurse and on the return update parent
// to be the root.

else {
int root = find(arr [i]);
arr [i] = root;

return root;

}

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log™*(n) =
0) ,h<1
1+ log*(log(n)),n>1

What is Ig*(253336)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of Of),
where n is the number of items in the Disjoint Sets.

In Review: Data Structures

Array Linked
- Sorted Array - Doubly Linked List
- Unsorted Array - Trees
- Stacks - BTree
- Queues - Binary Tree
- Hashing - Huffman Encoding
- Heaps - kd-Tree
- Priority Queues - AVL Tree
- UpTrees

- Disjoint Sets

Array

[o] (1] [2] 3] [4] [5] [6] (7]

 Constant time access to any element, given an index
a[k] is accessed in O(1) time, no matter how large the array grows

 Cache-optimized
Many modern systems cache or pre-fetch nearby memory values
due the “Principle of Locality”. Therefore, arrays often perform
faster than lists in identical operations.

[o] (1] [2] 3] [4] [5] [6] (7]

J

W Sorted Array
3] [4] [5] [6] [7]

* Efficient general search structure
Searches on the sort property run in O(lg(n)) with Binary Search

[0] (1 [2]

* |nefficient insert/remove
Elements must be inserted and removed at the location dictated by the
sort property, resulting shifting the array in memory — an O(n)
operation

[o] (1] [2] 3] [4] [5] [6] (7]

U
B Bl B | Unsorted Array

[0] (1 [2] 3] [4] [5] [6] [7]

e Constant time add/remove at the beginning/end
Amortized O(1) insert and remove from the front and of the array
Idea: Double on resize

* |nefficient global search structure

With no sort property, all searches must iterate the entire array; O(1)
time

CHEE NN W
[0] [1] [2] 3] (4] [5] [6] [7] Qu eue (F I FO)

e First In First Out (FIFO) ordering of data

Maintains an arrival ordering of tasks, jobs, or data

 All ADT operations are constant time operations
enqueue() and dequeue() both run in O(1) time

B 1 N B
[0] [1] [2] 3] [4] [5] (6] (71
¥
o mmmmm W Stack (LIFO)
[0] [1] [2] 3] (4] [5] (6] (71
e Last In First Out (LIFO) ordering of data

Maintains a “most recently added” list of data

 All ADT operations are constant time operations
push() and pop() both run in O(1) time

In Review: Data Structures

Array Linked
- Sorted Array - Doubly Linked List
- Unsorted Array - Trees
- Stacks - BTree
- Queues - Binary Tree
- Hashing - Huffman Encoding
- Heaps - kd-Tree
- Priority Queues - AVL Tree
- UpTrees

- Disjoint Sets

In Review: Data Structures

Array Linked
- Sorted Array - Doubly Linked List
- Unsorted Array - Skip List
- Stacks Graphs - Trees
- Queues - BTree
- Hashing - Binary Tree
- Heaps - Huffman Encoding
- Priority Queues - kd-Tree
- UpTrees - AVL Tree

- Disjoint Sets

The Internet 2003

The OPTE Project (2003)

Map of the entire internet; nodes
are routers; edges are connections.

push
mov
sub
mov
mov
cnp
jbe

heapifyUp(int*, unsigned int):

rop, rsp

16
qug;'d ptr [rbp - 8], rdi
dword ptr [rbp - 12], esi
dword ptr [rbp - 12], 1
.LBBO_4

HeapifyUp
BasicBlock

Graph

heapifyUp(int*, unsigned int):@§19
mov rax, qword ptr [rbp - 8]
mov ecx, dword ptr [rbp - 12]
mov edx, ecx
mov ecx, dword ptr [rax + 4*rdx]
mov dword ptr [rbp - 16], ecx
mov rax, qword ptr [rbp - 8]
mov ecx, dword ptr [rbp - 12]
shr ecx, 1
mov ecx, ecx
mov edx, ecx
mov ecx, dword ptr [rax + 4*rdx]
mov rax, qword ptr [rbp - 8]
mov esi, dword ptr [rbp - 12]
mov edx, esi
mov dword ptr [rax + 4*rdx], ecx
mov ecx, dword ptr [rbp - 16]
mov rax rd ptr [rbp - 8
mov esi: mrd gtr [rg - 1;]
shr esi, 1
mov esi, esi
mov edx, esi
mov dword ptr [rax + 4*rdx], ecx
mov rdi rd ptr [rbp - 8
mov ecx: mrd gtr [rg - 1;]
shr ecx, 1
mov esi, ecx
call heapifyUp(int*, unsigned int)

Generated using tools at
https://godbolt.org

A
heapifyUp(int*, unsigned int):@8
nov rax, gword ptr [rbp - 8]
nov ecx, dword ptr [rbp - 12)
nov edx, ecx
nov ecx, dword ptr [rax + 4*rdx]
' nov rax, gword ptr [rbp - 8]
\ nov esi, dword ptr [rbp - 12)
! shr esi, 1
nov esi, esi
nov edx, esi
cnp ecx, dword ptr [rax + 4*rdx]
jge .LBBB_3
\ [
\ |
II |
Il l
0‘ |
|
|
v
.LBBB_3:
jmp .LBBB_4
1
i
.LBB@_4:
add rsp, 16
pop rbp
ret

https://godbolt.org/

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.

2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.

3. If you end up back at the circle node, your
number is divisible by 7.

3703

“Rule of 7”

Unknown Source
Presented by Cinda Heeren, 2016

Conflict-Free Final Exam Scheduling Graph

Unknown Source
Presented by Cinda Heeren, 2016

“Rush Hour” Solution

Unknown Source

Presented by Cinda Heeren, 2016

“o.

<

.....

o
-
L]
'® [
a ° .
o o \7
.
€.
.
L .
oV .
. -
..
. .
o
.

Class Hierarchy At University of

lllinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are
courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class hi
erarchy at illinois/

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/

MP Collaborations in CS 225

Unknown Source
Presented by Cinda Heeren, 2016

Greg Turk and Mark Levoy (1994)

R ATATAY YN
RS TATANAN
oy ATE

&7
I\
ViV, 2 vaYAY

0

VAt
i\’
AN

YAN
Vi

ata

5
R
<

W
L= an\a
Vaa iy

L 0%
_ _AM

O ALY,
k) m.vunfon»«
ARraTAYY

To study all of these structures:
1. A common vocabulary
2. Graph implementations -
3. Graph traversals

4. Graph algorithms :

HAMLET TROILUS AND CRESSIDA

Morgan Stanley %

-

.
oTresne
©Brad
Tllinois .
. °n
ks . linois(ish) o @ © g St:Lotis < S e

® e pGCsAB

Wedding e
o oo

