
CS 225
Data Structures

November 6 – Disjoint Sets Finale + Graphs
G Carl Evans

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70

8 5 -1 -1 -1 3 -14

8 9

4 5

0

1

2

345

6

7

8
9

Disjoint Sets Find

Running time?
Structure: A structure similar to a linked list
Running time: O(h) < O(n)

What is the ideal UpTree?
Structure: One root node with every other node as it’s child
Running Time: O(1)

int DisjointSets::find() {
if (s[i] < 0) { return i; }
else { return _find(s[i]); }

}

1
2
3
4

2

5

9
83

1
7

Disjoint Sets Union

void DisjointSets::union(int r1, int r2) {

}

1
2
3
4

1

4

8

0

Disjoint Sets – Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -1 10 7 -16

8 9

7 7

10 11

4 5

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height Idea: Keep the height of
the tree as small as
possible.

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -4 10 7 -36

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 -4 10 7 -86

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Both guarantee the height of the tree is:

Disjoint Sets Find and Union
int DisjointSets::find(int i) {
if (arr_[i] < 0) { return i; }
else { return _find(arr_[i]); }

}

1
2
3
4

void DisjointSets::unionBySize(int root1, int root2) {
int newSize = arr_[root1] + arr_[root2];

// If arr_[root1] is less than (more negative), it is the larger set;
// we union the smaller set, root2, with root1.
if (arr_[root1] < arr_[root2]) {
arr_[root2] = root1;
arr_[root1] = newSize;

}

// Otherwise, do the opposite:
else {
arr_[root1] = root2;
arr_[root2] = newSize;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Path Compression

1

2

3

6

7

8

9

4

5

10

11

Disjoint Sets Find with Compression
int DisjointSets::find(int i) {
// At root return the index
if (arr_[i] < 0) {
return i;

}

// If not at the root recurse and on the return update parent
// to be the root.
else {
int root = find(arr_[i]);
arr_[i] = root;
return root;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0 , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O(____________),

where n is the number of items in the Disjoint Sets.

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

• Constant time access to any element, given an index
a[k] is accessed in O(1) time, no matter how large the array grows

• Cache-optimized
Many modern systems cache or pre-fetch nearby memory values
due the “Principle of Locality”. Therefore, arrays often perform
faster than lists in identical operations.

[1] [2] [3] [4] [5] [6] [7][0]
Array

• Efficient general search structure
Searches on the sort property run in O(lg(n)) with Binary Search

• Inefficient insert/remove
Elements must be inserted and removed at the location dictated by the
sort property, resulting shifting the array in memory – an O(n)
operation

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]

Sorted Array

• Constant time add/remove at the beginning/end
Amortized O(1) insert and remove from the front and of the array
Idea: Double on resize

• Inefficient global search structure
With no sort property, all searches must iterate the entire array; O(1)
time

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]

Unsorted Array

• First In First Out (FIFO) ordering of data
Maintains an arrival ordering of tasks, jobs, or data

• All ADT operations are constant time operations
enqueue() and dequeue() both run in O(1) time

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]
Unsorted Array

[1] [2] [3] [4] [5] [6] [7][0]
Queue (FIFO)

• Last In First Out (LIFO) ordering of data
Maintains a “most recently added” list of data

• All ADT operations are constant time operations
push() and pop() both run in O(1) time

[1] [2] [3] [4] [5] [6] [7][0]
Array

[1] [2] [3] [4] [5] [6] [7][0]
Unsorted Array

[1] [2] [3] [4] [5] [6] [7][0]
Stack (LIFO)

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Skip List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

Graphs

The Internet 2003
The OPTE Project (2003)
Map of the entire internet; nodes
are routers; edges are connections.

HeapifyUp
BasicBlock

Graph

Generated using tools at
https://godbolt.org

https://godbolt.org/

“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.
3. If you end up back at the circle node, your
number is divisible by 7.

3703

Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016

“Rush Hour” Solution
Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of
Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are
courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/

MP Collaborations in CS 225
Unknown Source
Presented by Cinda Heeren, 2016

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

