CS 225

Data Structures

October 26 — Hashing

G Carl Evans

What if 0(log,,n) is not fast enough?

Do you feel lucky?

A Hash Table based Dictionary

Client Code:

1 |Dictionary<KeyType, ValueType> d;
2|d[k] = v;

A Hash Table consists of three things:
1. A hash function, f(k)

2. An array

3. Something to handle chaos when it occurs!

A Perfect Hash Function

(Angrave, CS 241)

Ke Value
(Beckman, CS 421) . Value |
(Cha”en’ CS 125) Hash function
(Davis, CS 101) |

(Evans, CS 126) |
(Fagen-Ulmschneider, CS 107) |
(Gunter, CS 422) |
(Herman, CS 233)

Hash Function

Our hash function consists of two parts:
* A hash:

* A compression:

Choosing a good hash function is tricky...
* Don’t create your own (yet*)
* Very smart people have created very bad hash functions

Hash Function

Characteristics of a good hash function:

1. Computation Time:

2. Deterministic:

3. Satisfy the SUHA:

General Purpose Hash Function

Keyspaces

Easy to create if: | KeySpace| ~ N

General Purpose Hash Function

Keyspaces

Easy to create if: | KeySpace| ~ N

Difficult to Create:

General Purpose Hash Function

Keyspaces

Easy to create if: | KeySpace| ~ N

Difficult to Create:

Hash Function

In CS 225, we focus on general purpose hash functions.

Other hash functions exists with different properties
(eg: cryptographic hash functions)

(Example of open hashing)

Collision Handling: Separate Chaining
S={16,8,4,13,29,11,22} |S|=n

h(k) =k % 7 |Array| =N
0
1
2
3
4
5
6
T Worst case | suHA

Insert

Remove/Find

(Example of closed hashing)

Collision Handling: Probe-based Hashing

S={16,38,64,13,29, 11,22} |S| =n
h(k) =k % 7 |Array| =N

(<)} (6] £~ w N = o

(Example of closed hashing)

Collision Handling: Linear Probing
S={16,8,4,13,29,11,22} |S|=n

h(k) =k % 7 Array| =N
0 Try h(k) = (k + 0) % 7, if full...
1
2
3
4
5
6
T Worst case | suHA

Insert

Remove/Find

A Problem w/ Linear Probing

Primary clustering:

Description:

Remedy:

(Example of closed hashing)

Collision Handling: Double hashing

S={16,38,4,13,29,6 11,22} |S| =n
h(k) =k % 7 |Array| =N

Try h(k) = (k + 0*h,(k)) % 7, if full...

h(k, i) = (hy(k) + i*h,(K)) % 7

(<)} (6] £~ w N = o

Running Times

The expected number of probes for find(key) under SUHA

Linear Probing:
* Successful: (1 + 1/(1-a))
* Unsuccessful: %(1 + 1/(1-a))?

Double Hashing:
 Successful: 1/a * In(1/(1-a))
e Unsuccessful: 1/(1-a)

Separate Chaining:
* Successful: 1+ a/2
 Unsuccessful: 1 + a

(Don’t memorize these
equations, no need.)

Instead, observe:
- As a increases:

- If ot is constant:

Running Times
The expected number of probes for find(key) under SUHA

Linear Probing:
* Successful: (1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))?

Double Hashing:
 Successful: 1/a * In(1/(1-a))
e Unsuccessful: 1/(1-a)

ReHashing
What if the array fills?

Which collision resolution strategy is better?
e Big Records:

e Structure Speed:
What structure do hash tables replace?

What constraint exists on hashing that doesn’t exist with
BSTs?

Why talk about BSTs at all?

Running Times

Amortized:
Flnd Worst Case:

Amortized:
Insert Worst Case:

Storage Space

std data structures

std::map

std data structures

std::map
.:operator(]
::iinsert
.:erase

::lower_bound(key) =» Iterator to first element < key
::upper_bound(key) = Iterator to first element > key

std data structures

std::unordered_map
.:operator(]
::iinsert
.:erase

std data structures

std::unordered _map
.:operator(]
::iinsert
.:erase

::load_factor()
::max_load factor(ml) =» Sets the max load factor

