CS 225

Data Structures

November 29 — Dijkstra’s Algorithm Analysis

G Carl Evans

Dijkstra’s Algorithm (SSSP)

PrimMST (G, s):
foreach (Vertex v : G):

d[v] = +inf
plv] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex u = Q.removeMin ()
T.add (u)
foreach (Vertex v : neighbors of u not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
plv] m

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP (G, s):

6 foreach (Vertex v : G):
7 d[v] = +inf

8 plv] = NULL

9 d[s] =0
10

11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())

13 Graph T // "labeled set"

14

15 repeat n times:

16 Vertex u = Q.removeMin ()

17 T.add (u)

18 foreach (Vertex v : neighbors of u not in T):
19 if < d[v]:

20 d[v]

21 plvl]

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP (G, s):
foreach (Vertex v : G):

d[v] = +inf
plv] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex u = Q.removeMin ()
T.add (u)
foreach (Vertex v : neighbors of u not in T):
if cost(u, v) + d[u] < d[v]:
d[v] = cost(u, v) + d[u]
plvl] = m

Dijkstra’s Algorithm (SSSP)

Dijkstra gives us the shortest path from our path
(single source) to every connected vertex!

7
10 B
A 5
6 4
3 D
3
7 H
2

5
RS A8 _Jc_ D e _|F G __|H |
p: -- A B B F A F C

d: 0 10 17 15 12 7 11 21

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle a single heavy-weight
path vs. many light-weight paths?

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle a single heavy-weight
path vs. many light-weight paths?

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle a single heavy-weight
path vs. many light-weight paths?

Dijkstra’s Algorithm (SSSP)
Q: How does Dijkstra handle undirected graphs?

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle negative weight cycles?

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle negative weight edges,
without a negative weight cycle?

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle negative weight cycles?

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle negative weight cycles?

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle negative weight cycles?

Shortest Path (A= E): A2 F2E2> (C2>H >G> E)*
Length: 12 Length: -5 (repeatable)

Dijkstra’s Algorithm (SSSP)

Q: How does Dijkstra handle negative weight edges,
without a negative weight cycle?

Dijkstra’s Algorithm (SSSP)

What is Dijkstra’s running time?

DijkstraSSSP (G, s):
foreach (Vertex v : G):

d[v] = +inf
plv] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex u = Q.removeMin ()
T.add (u)
foreach (Vertex v : neighbors of u not in T):
if cost(u, v) + d[u] < d[v]:

d[v] = cost(u, v) + d[u]
plvl] = m
return T

Suppose | have a new heap: IS NS

Remove O(lg(n)) O(lg(n))
Min

Decrease O(lg(n)) Oo(1)*
Key

What’s the updated running time?
DijkstraSSSP (G, s):

6 foreach (Vertex v : G):
7 d[v] = +inf

8 plv] = NULL

9 d[s] =0

11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())

13 Graph T // "labeled set"

14

15 repeat n times:

16 Vertex u = Q.removeMin ()

17 T.add (u)

18 foreach (Vertex v : neighbors of u not in T):
19 if cost(u, v) + d[u] < d[v]:

20 d[v] = cost(u, v) + d[u]

21 plv] m

Landmark Path Problem

Suppose you want to travel from A to G.
Q1: What is the shortest path from A to G?

Landmark Path Problem

Suppose you want to travel from A to G.

Q2: What is the fastest algorithm to use to find the
shortest path?

Landmark Path Problem

In your journey between A and G, you also want to visit
the landmark L.

Q3: What is the shortest path from A to G that visits L?

Landmark Path Problem

In your journey between A and G, you also want to
visit the landmark L.

Q4: What is the fastest algorithm to find this path?
Q5: What are the specific call(s) to this algorithm?

