Data Structures Balanced Binary Search Trees

CS 225

Exam 2 (10/02 — 10/04)

Autograded MC and one coding question

Manually graded short answer prompt

Topics covered can be found on website

Registration started September 19

https://courses.engr.illinois.edu/cs225/fa2024/exams/

Additional Extra Credit / Research Opportunity

Research Survey by Morgan Fong, PhD student studying CS Education

Study meant to measure sense of belonging in CS courses

You are asked to complete surveys periodically

Completing survey will award +2 bonus points

Points are awarded individually!

Research permission not necessary!

Learning Objectives

Briefly review BST in the context of height

Discuss the big picture problem with BSTs

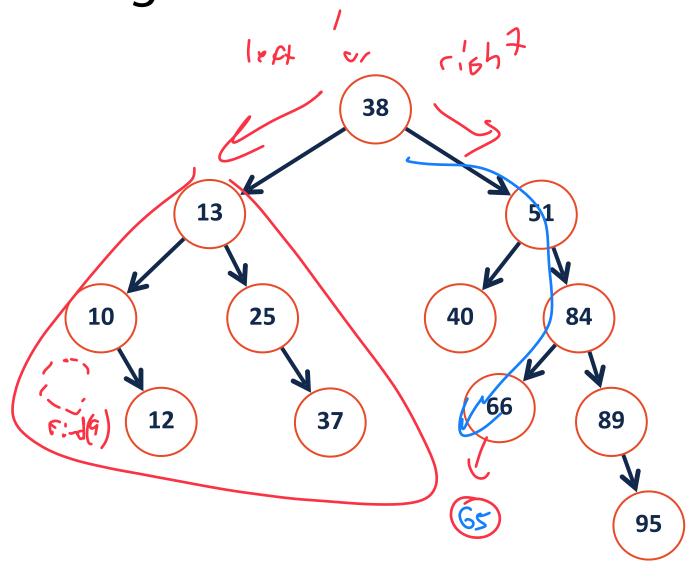
Introduce the self-balancing BST

BST Analysis – Running Time

Operation	BST Worst Case
find	O(h)
insert	O(h)
remove	O(h)
traverse	O(n)

BST Analysis – Running Time

Operation	BST Worst Case
find	O(h)
insert	O(h)
remove	O(h)
traverse	O(n)



Every operation on a BST depends on the **height** of the tree.

... how do we relate O(h) to n, the size of our dataset?

$$f(h) \subseteq n \subseteq g(h)$$

What is the max number of nodes in a tree of height h?

$$h=-1$$

$$h=0$$

$$h=1$$

$$h=1$$

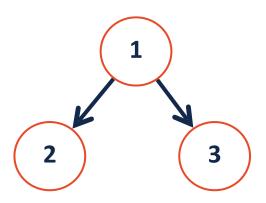
$$h=1$$

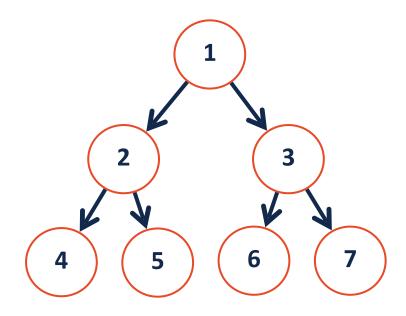
$$h=3$$

$$h=1$$

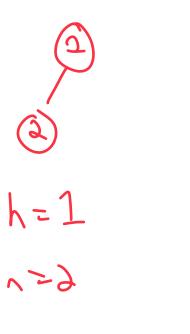
$$h=3$$

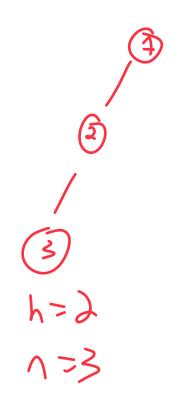
What is the \max number of nodes in a tree of height h?



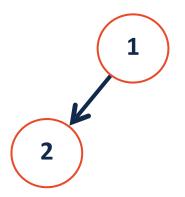


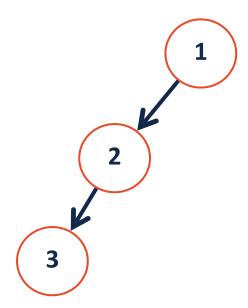
What is the **min** number of nodes in a tree of height h?





What is the **min** number of nodes in a tree of height h?

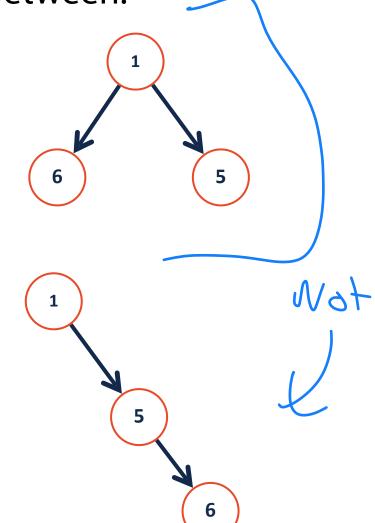




A BST of *n* nodes has a height between:

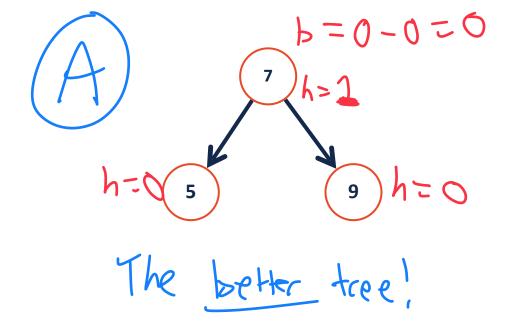
Lower-bound: $O(\log n)$

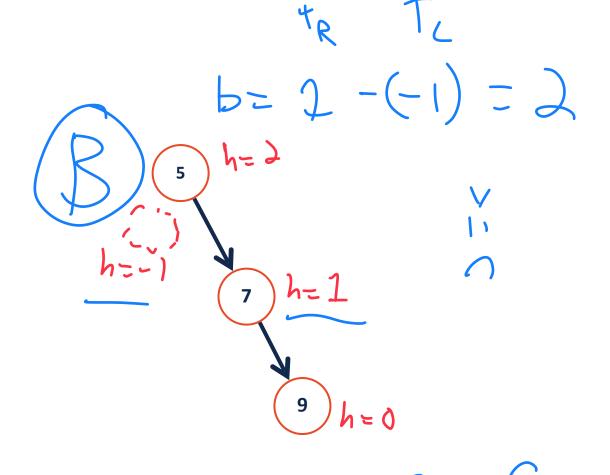
Upper-bound: O(n)



Height-Balanced Tree

What tree is better?





Height balance: $b = height(T_R) - height(T_L)$

A tree is "balanced" if: all nodes have balanced = 1

Option A: Correcting bad insert order

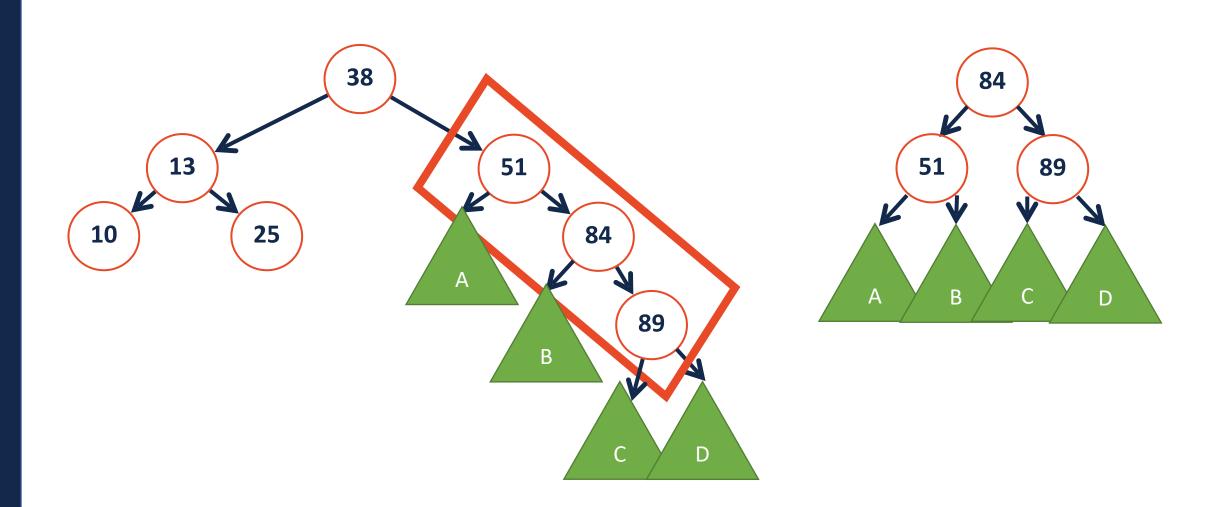
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!



We can adjust the BST structure by performing **rotations**.

These rotations, when used correctly:

1.

2.

We can adjust the BST structure by performing **rotations**.

These rotations, when used correctly:

1. Modify the arrangement of nodes while preserving BST property

2.

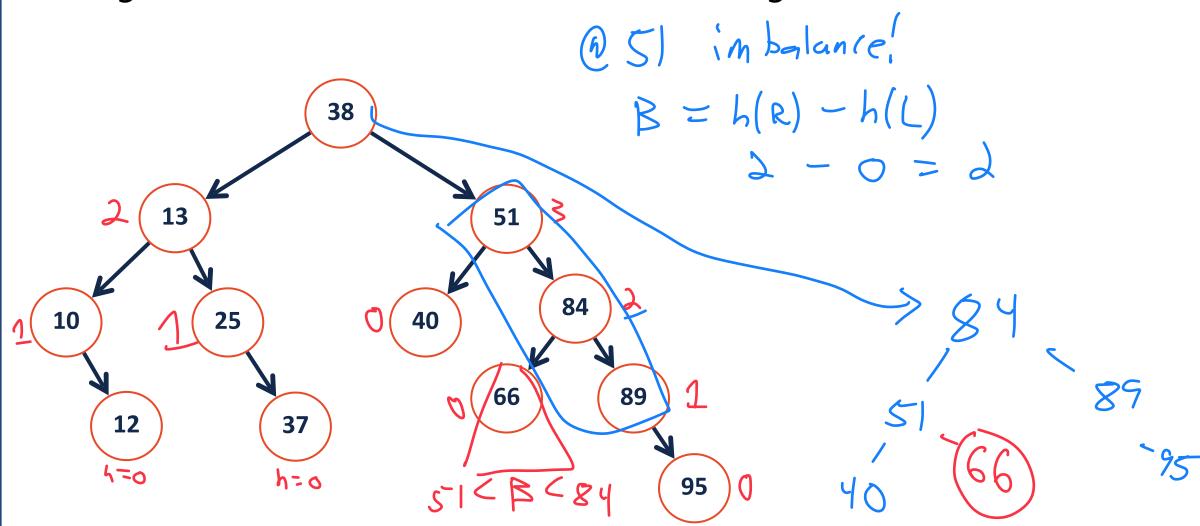
We can adjust the BST structure by performing **rotations**.

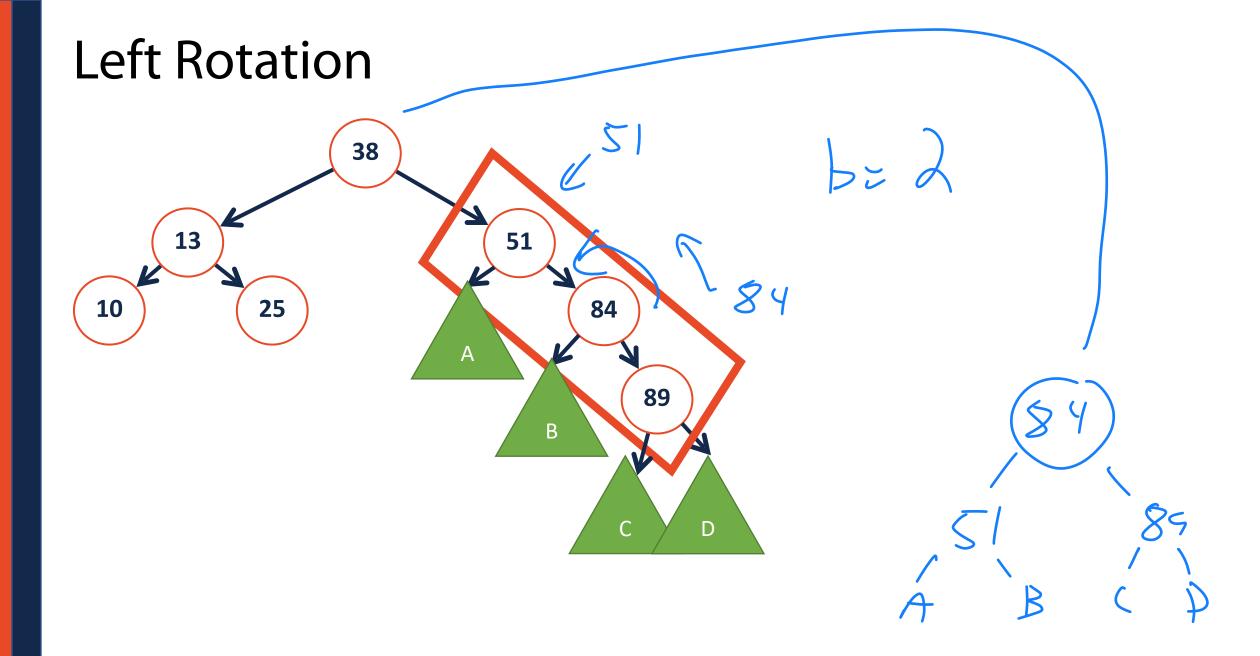
These rotations, when used correctly:

1. Modify the arrangement of nodes while preserving BST property

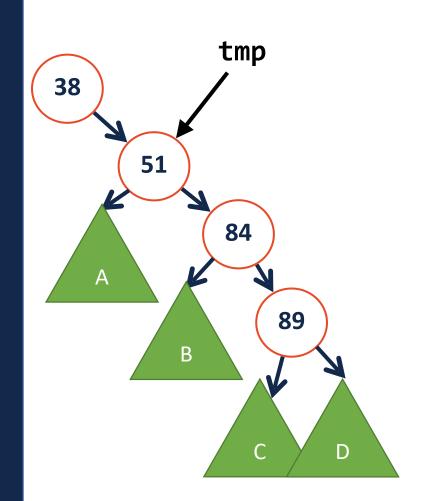
2. Reduce tree height by one

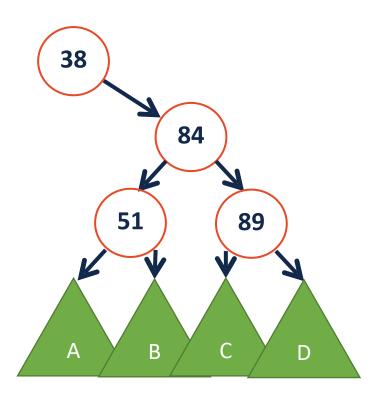
To begin, lets find the imbalance in the following tree:



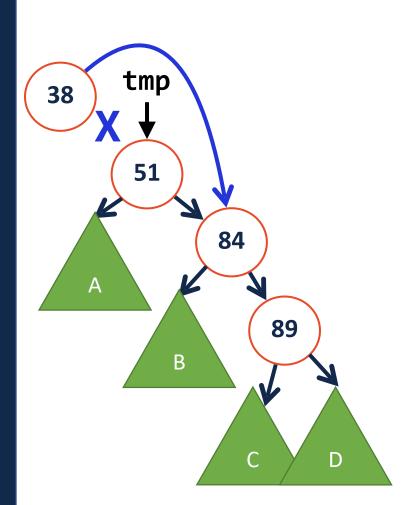


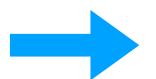
1) Create a tmp pointer to root

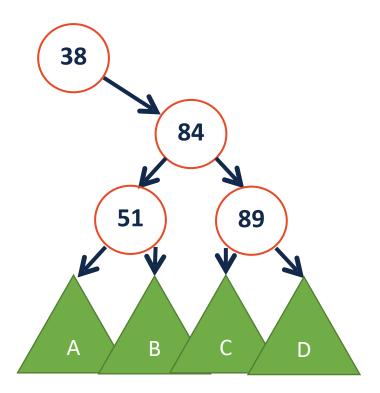


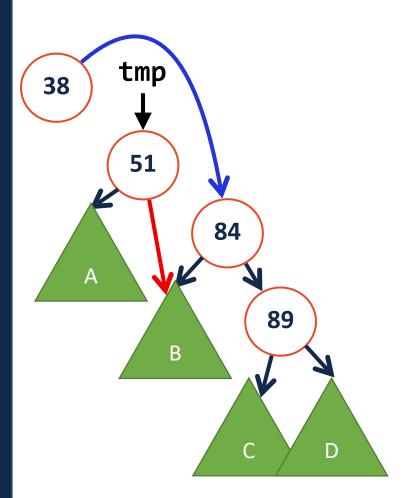


- 1) Create a tmp pointer to root
- 2) Update root to point to mid

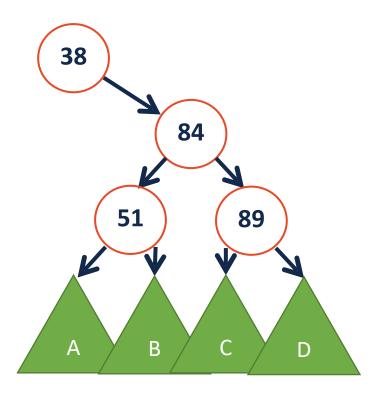


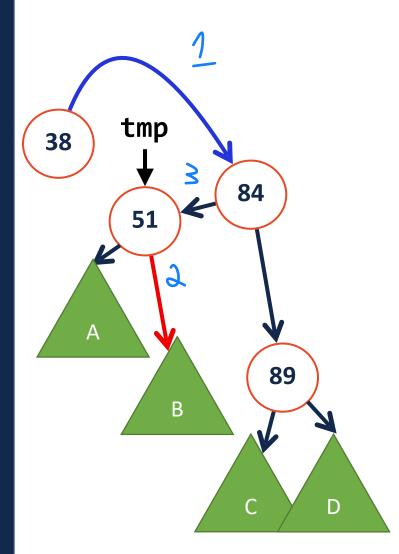




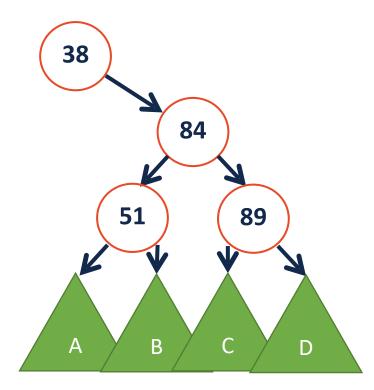


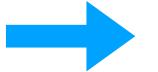
- 1) Create a tmp pointer to root
- 2) Update root to point to mid
- 3) tmp->right = root->left



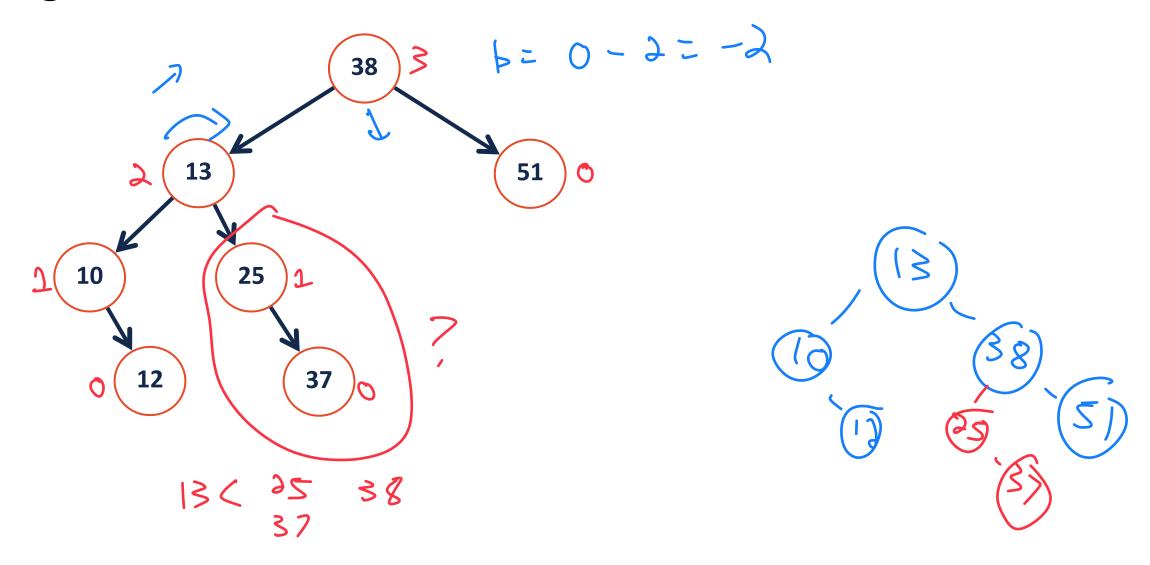


- 1) Create a tmp pointer to root
- 2) Update root to point to mid
- 3) tmp->right = root->left
- 4) root->left = tmp

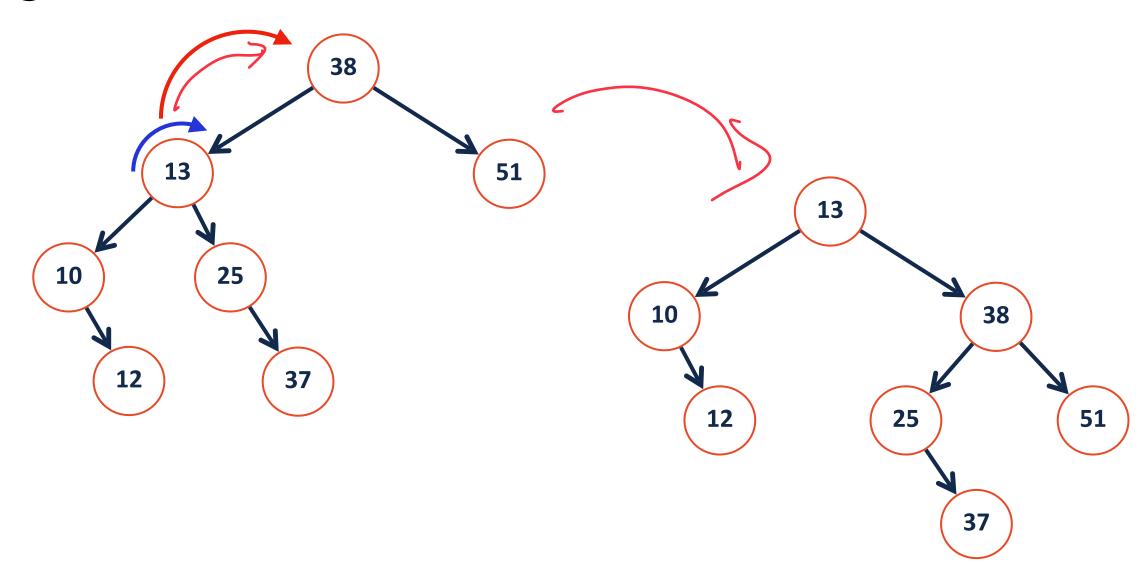




Right Rotation



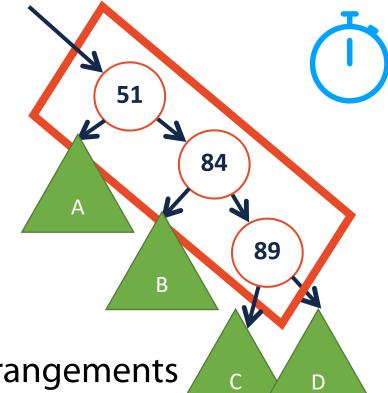
Right Rotation



Coding AVL Rotations

Two ways of visualizing:

1) Think of an arrow 'rotating' around the center



2) Recognize that there's a concrete order for rearrangements

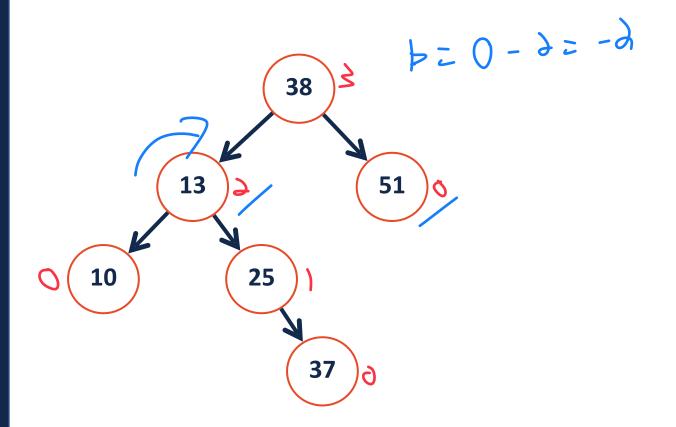
Ex: Unbalanced at current (root) node and need to rotateLeft?

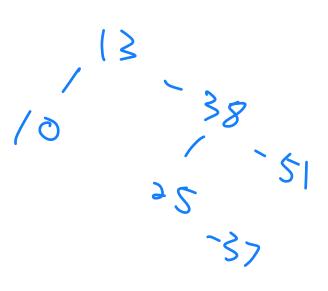
Replace current (root) node with it's right child.

Set the right child's left child to be the current node's right

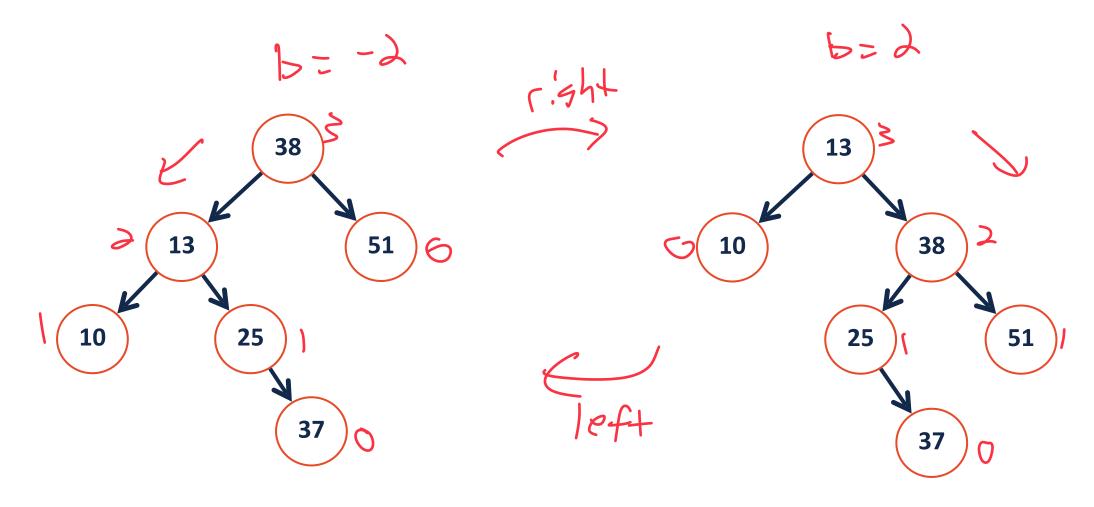
Make the current node the right child's left child

AVL Rotation Practice



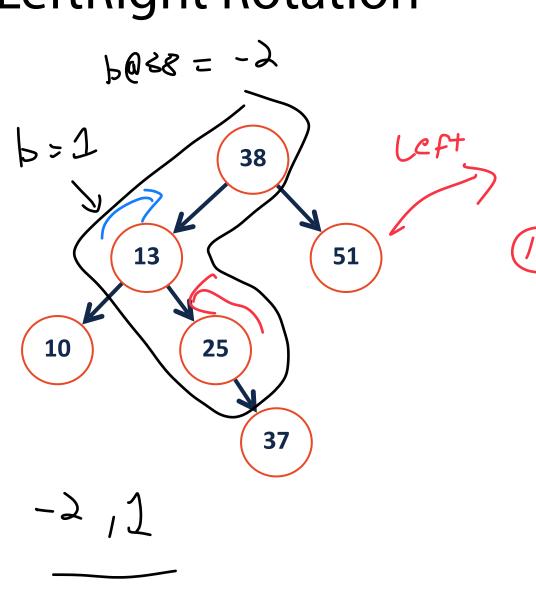


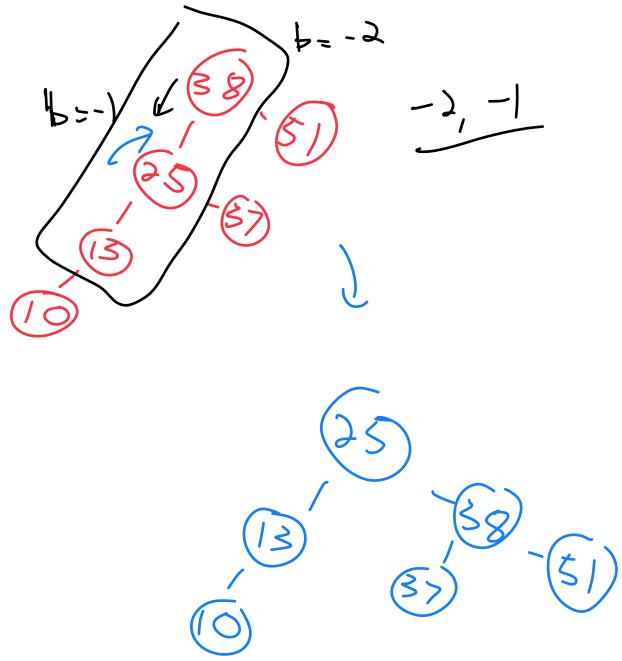
AVL Rotation Practice



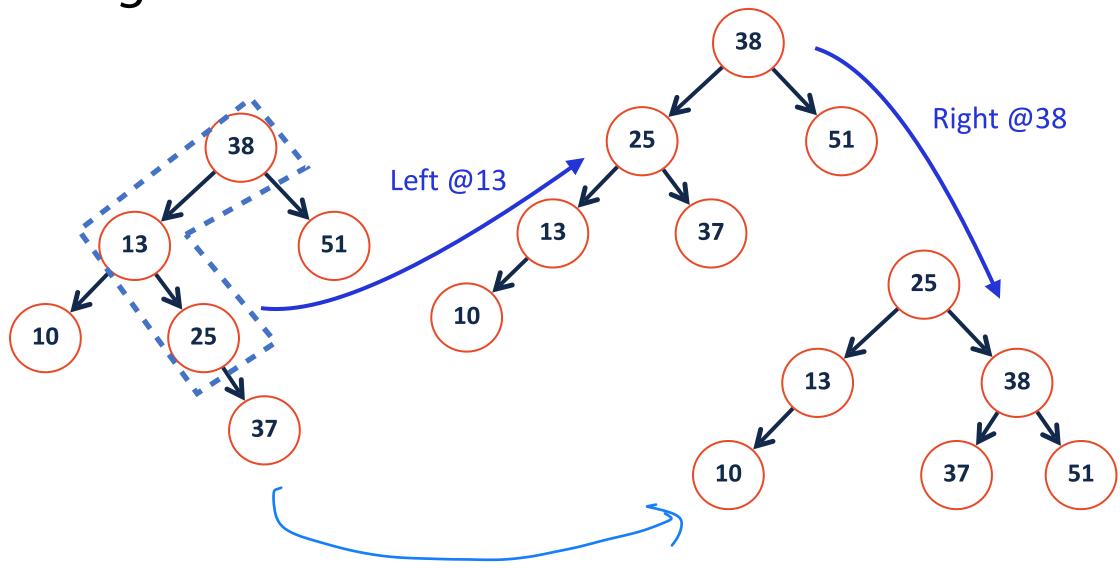
Somethings not quite right...

LeftRight Rotation

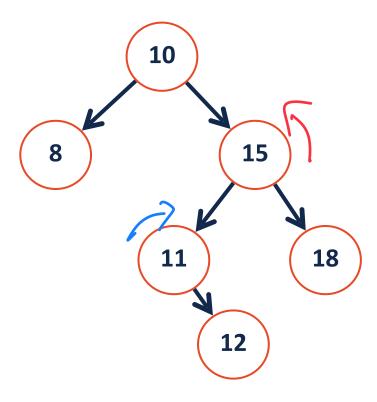


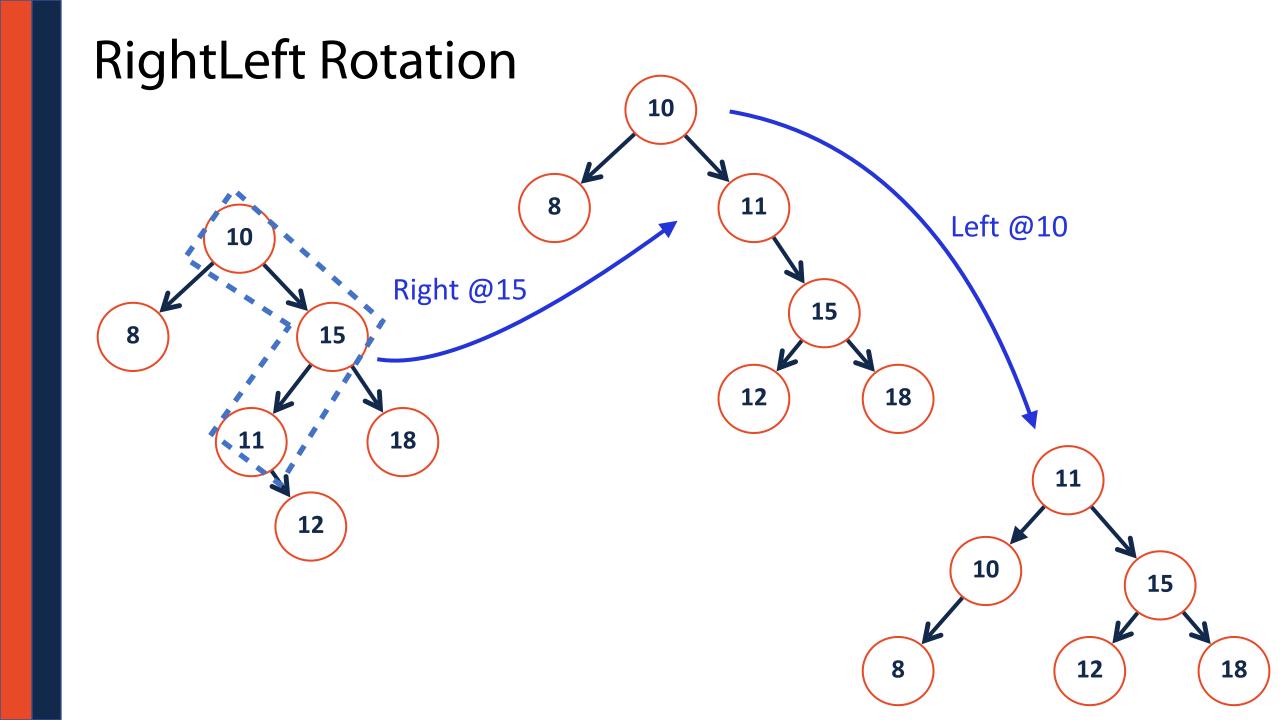


LeftRight Rotation



RightLeft Rotation





AVL Rotations ceft in ba Left inba Right imba Right imba left heavy Right heavy Ceft Right Right Left Left Right

V Your best friend

AVL Rotations

Four kinds of rotations: (L, R, LR, RL)

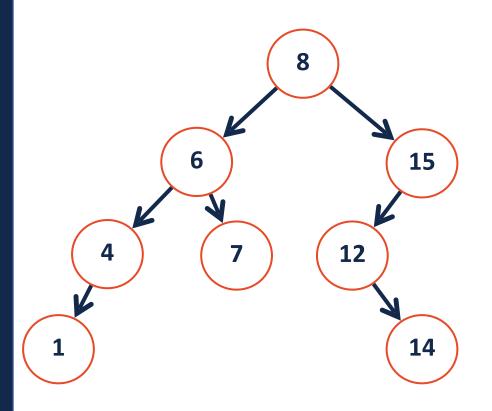
1. All rotations are local (subtrees are not impacted)

2. The running time of rotations are constant

3. The rotations maintain BST property

Goal: Reduce height by One each rotation
Maintain a balanted tree

AVL Rotation Practice



AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?

Find