Computer Science - University of Illinois Urbana-Champaign Fall 2025
CS 225 - Lecture 7 Scribe : Harsha Srimath Tirumala

1 Learning Goals

— Array List : Resize x2, Amortized Analysis
— Data structure tradeoffs : Extensions to lists

— Stack : LIFO data structure

2 Array Lists - Efficient find, Inefficient modify

Array lists support efficient search of data when given access to the relevant location(s). However, array lists are

inefficient for operations like modify which involve shifting subsequent elements.

3 Array Lists (at capacity)

In the previous lecture we discussed the resize +2 strategy - which incurred ©(n) work per insert. We will now

discuss a different strategy.

3.1 Resize x2

Consider the strategy of doubling the size of the array list when an element has to be inserted with the array at
capacity. This can be implemented by allocating a new block of memory for a list of size double the current capacity
and then copying all elements onto the new array list.

Nlustrated below is how an array list of size 4 (at capacity) supports a new insertion of element 3 followed by insertion
of 7, 31, 23 and 29.

19 ) 13 17

19 ) 13 17 3

19 ) 13 17 3 7

19 ) 13 17 3 7 31

19 ) 13 17 3 7 31 23

19 ) 13 17 3 7 31 23 29




Computer Science - University of Illinois Urbana-Champaign Fall 2025

Let T'(n) denote the time taken to populate an array list of size n. It is easy to see that :
T(n) =T(n/2)+(n/2) + (1 x (n/2)) = T(n/2) +n

This is because it took T'(n/2) to populate the array list to (n/2) elements; we then required copying (n/2) elements
into a new n sized array list before inserting element ((n/2) + 1). All subsequent inserts thru element n only need
O(1) time each as the list is not at capacity.

Solving for T'(n) :

i=[logy n] 1\log, n+1
n 1-— (5) 82 1
T(n)=Tm/2)+n= Y 2i=n<>:2n<1—2>:2n—1

=0 2 n

where T'(n) is the sum of a geometric series with first term n and common ration % The total number of terms is
log, n + 1 as we need to double our list log, n times to get to capacity n (we have made the simplifying assumption

that n is a power of 2).

This shows us that inserting n elements into an array list using the resize x2 strategy requires ©(n) work. The worst
case cost of insert is still O(n) - as evidenced by the insertion of the (% + 1)—th element which requires copying the
first 5 elements to the newly allocated array list. The amortized cost of insert is now % ~ 2 - which is the big

saving this strategy gives us.

Table 1: Resize +2 vs Resize x2
Worst-case | Amortized

Resize 42 O(n) O(n)
Resize x2 O(n) o(1)

Note - We have calculated the precise amortized cost (© bound) of insert - not just an upper bound.

4 Linked list vs Array list

Table 2: List Implementations

Linked List Array List
Random Access O(n)

Insert after given element O(n)

Delete after given element O(n)

Insert at arbitrary location O(n) O(n)

Remove at arbitrary location O(n) O(n)

Search for an input value O(n) O(n)

Insert/Remove front O(n)
Insert/Remove back O(n) (Amortized)

5 Tradeoffs

We will frequently ask ourselves if there are any tradeoffs that lead to meaningful savings with respect to data

structures.



Computer Science - University of Illinois Urbana-Champaign Fall 2025

5.1 Size of a Linked List

Given a linked list, we need to scan through the list from head to the null pointer to establish the size of the linked
list. This requires O(n) work. We can instead have an unsigned int size to store the size of the linked list and edit

it appropriately after each operation. Depending on the context, this can be a useful tradeoff.

5.2 Sorted Linked list

A sorted linked list has limited benefits as random access is expensive. It may be of use in cases such as an in order

traversal that prints elements in a sorted order.

5.3 Sorted Array list

A sorted array list is quite useful in supporting a quicker search. Binary search for sorted array list has a complexity
of O(log,n) - as opposed to searching an unsorted array list. The downside? Insert is more expensive as it must be

structured (and we can’t just insert at the end).

5.4 Doubly Linked list

A linked list where each node stores two pointers - to the next as well as the previous element. This supports

bi-directional scanning. Since each node stores two pointers, the storage requirement is an additional O(n) pointers.

5.5 Utopia : O(1) Insert, O(1) remove

Is it possible to have a data structure that supports efficient insert and remove operations? Well, the ability to
efficiently do random access gets in the way of this goal. Why is that? It’s because if we require efficient random
access (say O(1) time), then we need to do some bookkeeping post every insert/remove operation to continue to
support random access. The amount of work required can be significant (for example, 2(n) in the case of array lists).

We will now discuss a data structure that makes this tradeoff to support O(1) Insert, O(1) remove.

6 Stack

< A stack stores an ordered collection of items. Stacks support only two operations - Push and Pop :

— Push : Put an item on top of the stack.
— Pop : Remove the top item of the stack (and return it)

Stack has only one pointer - top_. Since elements can only be removed from the top, stacks follow the Last In
First Out model. Stacks do NOT support random access.

< C++ has a built-in stack implemented using a vector or deque. Array list implementation supports O(1) insert

and O(1) remove - as long as array is not at capacity.

— Stacks thru linked lists - Stacks can be simulated using linked lists where push is InsertFront, Pop is Remove-
Front and the head pointer simulates the behavior of top of stack. Linked list implementation entails O(1)

insert and O(1) remove.



	Learning Goals
	Array Lists - Efficient find, Inefficient modify
	Array Lists (at capacity)
	Resize x2

	Linked list vs Array list
	Tradeoffs
	Size of a Linked List
	Sorted Linked list
	Sorted Array list
	Doubly Linked list
	Utopia : O(1) Insert, O(1) remove

	Stack

