Data Structures

C++ Review
CS 225 August 27, 2025

Brad Solomon y

UNIVERSITY OF /7
ILLINOIS
URBANA-CHAMPAIGN ;lﬁ

Department of Computer Science

Do you want to do research?. ..
. . . Are you a freshman or sophomore?

Come apply to URSA!

Undergraduate Research in Scientific Advancement

Benefits:
Research Experience
Networking
Soft and Hard Skill Development Scan for:
1 credit hour + GPA boost * Website
« Application

Resume Booster
* |Interest form

CS 199-225 Registration Issues

The department is aware of registration issues

| will announce on Discord / class when this is fixed

(Optional) Open Lab This Week

This week’s lab is open office hours
Focus is making sure your machine is setup for semester

Installation information available on website

-0
o)

)

Office Hours

The office hour calendar will be populated next week
For now, please use Discord or Piazza ¢7 ¢m=/

You can also stop by faculty office hours!

Thursday, 11 AM — 12 PM

Siebel 2233

Testing a ‘Clicker’ Set-up! E E

i ?
Have you S|gg?d up to take exam 0 E —
A)Yest TI*

i

Join Code: 225

B) No!

You can participate by going to website:

https://clicker.cs.illinois.edu/

https://clicker.cs.illinois.edu/

Exam 0 (9/3 — 9/5) g%uﬁ @

An introduction to CBTF exam environment / expectations
Quiz on foundational knowledge from all pre-reqgs
Practice questions can be found on PL

Topics covered can be found on website

_—

Registration is now open!)

https://courses.engr.illinois.edu/cs225/fa2025/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

yZl J\Pl-j’cw‘ &r € Xom A
A brief high level review of C++ >
Fundamentals of Objects / Classes
Pointers . . EOw

Memory Management and Ownership

Brainstorm the List Abstract Data Types (ADT)
AN

Encapsulation - Classes

Abstraction / organization separating:

Internal Implementation External Interface
impier
& How 6 o
L - 6)()‘7&\
= Your >O\>] (7@ %L\ G"‘c\\-w\

Qs

i :

¥ TR YA TR O

= |7
1)
=
=
=)
=

A

‘vw..

Brainstorming a ‘Library’ class
T ake [€ace

1| class Library ({ . . e
2|public: & o(Hss.\:\c ‘o ;& Found - o ¢ v :
3 \ DR B\/(\AMQ .—7 .A;\-
g < D(’wey Dec' md éy;\'é’w\ (‘“") &\)
6| © Chekor Bk ()

7

g G ge*States of Bt)

9

10

11

1 b b aes) by

13| private: QA Y (540 34

14_/ kg '97 '

15 '|.‘\l \er Edﬁ ‘A

15 A0 S Gl

17 Q

18

19

20

21|}

Memory Management — Ownership

Imagine | have a Library class (and hidden Book class):

1| class Library({

2|public:

3 void addBook (Book * book) ;

4 void removeBook (std::string title) ;
5 void returnBook (Book * book) ;

6

7| private:

8 std: :vector<Book*> in;

) std: :vector<Book*> out;
10| };
11 O\

ods So0k ()
. T L 1L\ <«
— ;2{thut€kzﬂx

Qut CI\]F

Memory Management — Ownership E E
Imagine | have a Library class: ?Fﬁ
’ Of

1| class Library{

2|public:

3 void addBook (Book * book) ;

4 void removeBook (std::string title); .
5 void returnBook (Book * book) ; JOln COde. 225
6

7| private:

8 std: :vector<Book*> in;

9 std: :vector<Book*> out;
10|}’
11

Pretest: Does Library class ‘own’the Books it is storing?
A) Yes! B) No! C) Not sure

Pointers

Pointers store memory addresses
| [3

int *p = &a; ald (g3 ofF
P

Pointers

Pointers store memory addresses

int a = 3;
int *p = &a;

pt+;

Does a change? Does p? Ind....

Pointers

Pointers store memory addresses

int a = 3;

int *p = &a;

o Xe [chenrs

(*p) ++;

Does a change? Does p?

P

I :

Oxfffffcoe2l6ce

Memory Management

Stack: Local variable storage

Ex: int x = 5;

Heap: Dynamic storage

Ex: int* X

TMusX Meke whey done

new int[5];

HOBRIT

Memory Management - Parameters « -

Pass by Value: A local f th |
ass by Value: A local copy ort eongma/mk A Novv CoFY

Ex: addBook (Book book) %'\ @

Pass by Pointer to Value: An address on the heap
Creckitg <4 Toutr Jor e @

Ex: addBook (Book* book) 9\ 0k oW ks gk

Pass by Reference: An alias to an existing variable
—_— Copgk Pt

Nee
Ex: addBook (Book& book) ik P palll Name

Memory Management - Parameters

Which implementation do you prefer?

OWoJdJooUbd WN PR

class Library {
public:

int numBooks;

std: :string * titles;
};

// *** Function A **x*

std: :string getFirstBook (Library 1) {
return (l.numBooks > 0) ? l.titles|[O0]

} <

// *** Function B **x*
std: :string getFirstBook (Library * 1) {
return (1->numBooks > 0) ? 1->titles|[O0]

}

// *** Function C **x*
std: :string getFirstBook (Library & 1) {
return (l.numBooks > 0) ? l.titles|[O0]

} 4—%—?‘

: "None";

: "None";

: "None";

105

Memory Management @

Local memory on the stack is managed by the computer

Heap memory allocated by new and freed by delete

Pass by value makes a copy of the object

<~

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

[—

Memory Management — Ownership

What does ownership mean in C++? ol R

De{:'l{; W\"d G\UOCAL“S , AQ q“’-'(a“% /ucmﬂ\}

Memory Management — Ownership ?'ﬁ:'ﬁ

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:
void addBook (Book * book) ;

void removeBook (std::string title);

void returnBook (Book * book) ;
private:

std: :vector<Book*> in;

std: : vector<Book*> out;

Does Library‘own’Books?

A) Yes! [7¢.

B) No! S0,
C) Notsure 3.,

Memory Management — Ownership

S

OooJdJouUldkd WDNBKE

RRRRERRRRRR
OdoOUId WNRO

class Library{
public:
void addBook (Book * book) ;
void removeBook (std::string title);
void returnBook (Book * book) ;
private:
std: :vector<Book*> in;
std: :vector<Book*> out;

P

Does Library‘own’Books?

A) Yes!
“B) Nol
C) Not sure

Are they destroyed when the
Library destructor is called?

N Rooks o Cowe nhoe

cl<e!

Memory Management — Ownership :
1| class Library{ : .

2| public: « Mdk'“g ” Does Library ‘own’Books?
3 void addBook (Book book) ; a v <

g catN A) Yes! /0%

6 id Book (std: : stri title) ; =

; void removeBook (s string title) B) No! 307,

8

9 _ void returnBook (Book book) ; C) Not sure

10| private:

11

12 std: :vector<Book> in;

13

14

15 std: : vector<Book> out;

16

17

18|}

| :
Veckor oF Bl O%jechs

Memory Management — Ownership ﬁi?;ﬁ

1 1b . 1 /

lpublier Does Library ‘own’ Books?

3 void addBook (Book book) ;

4 A) Yes!

5

S void removeBook (std::string title); B) NO!

8

9 _ void returnBook (Book book) ; C) NOt Sure
10| private:
11
12| stdiivector<Book> in; Are they destroyed when the
14 Library destructor is called?
15 std: :vector<Book> out;

16

17

18|}

Cidtory Lol e vecer whid o) de\ek Baaks

Memory Management — Ownership ﬁi?;ﬁ

1 1b . 1 /
lpublier Does Library ‘own’ Books?
3 void addBook (const Booké& book) ; <
4 — A) Yes! 237
5
S void removeBook (std::string title) ; B) NO! 6 ¢ ‘;Q
8
9 _ void returnBook (const Booké& book) ; C) Not sure
10| private:
11
12| std::ivectordBokr> in; Are they destroyed when the
14 Library destructor i ed?
15 std: :vector<Book*> out; -
16
17
18|}

Boak T tmp = 2 book,

Memory Management — Ownership @

The owner of an object is responsible for its resource
management (particularly allocation / deallocation)

A‘litmus test’ of ownership — who handles destruction?
If we are storing pointers or references, not our problem!

Vector’s consolation prize — vector handles destruction

The Rule of Three

If it is necessary to define any one of these three functions in a class,
it will be necessary to define all three of these functions:

1. Destructor — Called when we delete object

2. Copy Constructor — Make a new object as a copy of an existing one

3. Copy assignment operator — Assign value from existing Xto Y

‘The Rule of Zero'

A corollary to Rule of Three

Classes that declare custom destructors, copy/move constructors or
copy/move assignment operators should deal exclusively with
ownership. Other classes should not declare custom destructors,
copy/move constructors or copy/move assignment operators

— Scott Meyers

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({
public:

};

}

int numBooks; é%/’4

std: :string * titles;
~Library () ;

Library(int num, std::string* list);

Library: :~Library () { -
delete titles;
titles = nullptr;
—
Library: :Library(int num, std::string* list) {
numBooks = inNum;
titles = new std::string[inNum];

}

std: :copy(inList, inList + inNum, titles);

int main () {

std: :string myBooks[3] = {"A",
Library L1(3, myBooks);

Library L2(L1);§§;~
return 0O;

"B", "C"} ; 7_}

—_—

}
G uiImqg 3(4,||y ﬁ@/\ﬂq‘\f e

C_dp\/ @n S*/vt+<,/

S S)'M\\OW

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({

public: Whats wrong with this code?
int numBooks;
std: :string * titles; / . .
e () A. Can't create L2 Library obj
Library(int num, std::string* list); . .
i B. Don't delete either Library
Library: :~Library () { 1 1
e C. The second object being
titles = nullptr; deleted crashes

}

e

Library: :Library(int num, std::string* list) {
numBooks = inNum;
titles = new std::string[inNum];
std: :copy(inList, inList + inNum, titles);
}

int main () {
std: :string myBooks[3] = {"A", "B", "C"};
Library L1(3, myBooks);
Library L2(L1); OO

return O; =5 ﬁ
} ﬁ
[x]

Templates

A way to write generic code whose type is determined
during completion

SXVO?FG’) here & 44 é(d\/

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

template <typename T>
T sum(T a, T b){

}

templatel.cpp

template <typename T>

T max(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

}

SNSoobkd WN R

Templates are very useful!

List Abstract Data Type

What is the expected interface for a list?

