Data Structures

Lists and List ADT
CS 225 August 29, 2025

Brad Solomon
;@
UNIVERSITY OF

ILLINOIS /b9

URBANA-CHAMPAIGN

Department of Computer Science

CS 225 Honors Class Registration Fixed

—/

James Scholar Enrollment;

1. Register for CS 225 section AH (CRN 75824)

2. Fill out the appropriate Honors Credit Learning Agreement

Check your individual college for Scholar deadlines
Standard Enrollment:
1. Register for CS 199-225 (CRN 40944) (/

This is a pass-fail grade and a 0-credit course

No class Labor Day (Monday September 1st)

Things to keep in mind for next week:
-Study forexam 0. & Pleackice, Qkom © Boaus
/

- Complete POTDs for extra credit
/\/-\/

V.M

- Set up your own machine!

- Join the CS iscord!
- Ask questions anonymously in class! Hasha @ Siebe) 953}

- Request start of lecture music 4'3Q — (90 PM

- \a‘\
Staff office hours start Tuesday** / TOday

~
J

Learning Objectives

Define the functions and operations of the List ADT

——

Discuss list implementation strategies &/)

Explore how to code and use a linked list —
/—\/

Practice fundamentals of C++ in the context of lists

Last time: Memory management

Local memory on the stack is managed by the computer
Heap memory allocated by new and freed by delete
Pass by value makes a copy of the object

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

Memory Management - Ownership
L\ K Copy Original

HOBRIT HOBRIT

Pass by Value:

A local copy of the original
Ex: addBook (Book book)

—

. —T1
.Pass by Pointer to Value: Vot & s, CHobBIT

An address on the heap R

Ex: addBook (Book* book)

Pass by Reference:

wereret
An alias to an existing variable

Ex: addBook (Book& book)

Local varY X
is/)_(__

Templates

A way to write generic code whose type is determined
during comptetion B

Vil v dn

D —

T Sum (T a, T)¢

(eburn @+ B

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

Templates

A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ codzemeed)ea
Main, CPP 3 ‘AY Soum (A% a / \M’)')D>

T sum(T a, T b){ SW‘"(); ol)"
i o C.-elOW\’ e SUM (;l L\\‘/ ?'0“'\ éu/’l (-(:laﬁ\— al le“— L)
\) COMP’\"T gwq\-lé (&Q

s vhater L owant

/, templatel.epp |,

template <typename T>

T max(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

}

SNSoobkd WN R

’l—féjr C &Y. Tragd

Max (é, q)
k) Tuwege 2

Max ¢ Sleax7 (23, ‘H> .

FUI‘“\J(= -
C/. (/q&)‘ ;bs‘\‘lf\‘(o\f“(\n
*a (haose

May Bk

Templates are very useful!

What is your favorite data structure? g_%ug
2

(0
A) Lists B 1/ B) Tree Join Code: 225
t/(ff”“
S oo

C) Graphs \’ 6/ D) Hash Tables 3 %
0]

(W
3 \\\f; 0 Apple
b d 1 %,
W (w @

2 Pear

Your favorite data structure: Trees

(/:9{8

Your favorite data structure: Frees

N ()]
w (o))

7 8 9 10 11 12 13 14 15

9
\
N e

Your favorite data structure: Graphs

>

S

vaY
<

T
=

\l‘g
)

OIS
3

) AVav
K N N
KO S
RSN RS At
A

A AL
gég;}#{vﬂh

*‘Avﬂ»(g‘: Ny s

R iy
AR
@"’gm

LR

S
VA v e
SO ,&;M
1 %)
2af . il

2

o)

Your favorite data structu re:-G-Fa-phel'Sl‘s

(W
a C
/ b\ d
W O, @
Uerkyy Skl sty i
u u v a F
Y} v w b
w u w C \
z w z d \/

Your favorite data structure: Hash Tables

(‘,5\)
d'(5 H={h1, hz,---,hk}

L Greg

0 7/ A 1
12 “ L
2 | @+ | Brett Betty Bob 1
3@ A- B B+ 0)
4 \ %, 1
> |9 Ali Alice Anna 0
612 B+ A+ A- 0
7 0 1
93 Lily Laura Sue 0
102 B+ A B

%) 0/_

So 100% of people are excited about lists!

A) Lists B) Trees

C) Graphs D) Hash Tables
3 @ c O Apple
/b\m d 1 o

@ bt @ 2 Pear

Note: Not every tree / graph / hash is actually a list :) é/

Abstract Data Types

A way of describing a data type as a combination of:

Data being stored by the data type
7

Operations that can be performed on the data type

The actual implementation details of the ADT aren’t relevant!

&

—_—

List ADT (What do we want our ILs;c to do?)
Tot () Comvaber 10 U5
Re dare

Qemgvﬁ &>
£raac) (b vl by ex 7)

Sorl() &> (Quese()
Leagth()

Splire)

CongXruittan

List ADT Not the Cawe as Sorled @
/ _
P LC/ | | a

A list is an ordered collection of items

Items can be either heterogeneous or homogenous

% pixe) dade HIPR G ql| Som dade Fupe
The list can be of a fixed size or is resizable : —
._/ <

A minimal set of operations (that can be used to create all others):
1. Insert \)
2. Delete
3. IsEmpty
4. getData

! s

5. Create an empty list
/_\

e

List Implementations
1. Lo [ge) Clo¥

Linked List

C (S (2 (2 (

A (‘sX ‘MP\?"'W\Leé V|$: ”3 L\S‘\’ /\)QBP}

Class Ui Node ¢
TR datar,

Lok Mo * next

\&“L\ | 7 ¢ List.h

——

28 | class ListNode {
29 T & data;
30 ListNode * next;

31 ListNode (T & data) : data(data), next(NULL) { }
32| };

Why is data stored as a reference?

\3}\'{'\5 Y W Gank <l/\a\9e whet e
G (g be nallpic

Y No '\>o:/\\€/ OVer hea)
Why is next a pointer?

G owe Wt Yo e able Y <l’lag,< g
LS Con be wligr, Dedsuly walve

qre !‘.zg'ml} "9 2 ((Onﬁ)‘ %‘Ah’)

List.h

| #pragna once How do | access list given head_?
3 —
4 | class List { /T‘/>-B/ B
5 public: head _ C @’- S (
(X
28 void insertAtFront (const T& t); /J; N
29 . /"
30 private: gk""i\’ LS* MQ% (Gfe — .
31 class ListNode{K' e = \'\eaé\,/
32 T & data;
33 ListNode * next; B
34 ListNode (T & data) QU[(- CU[F'-‘?AKXI'/
35 data(data) , next (NULL) { }
36 };
37 -
38 @tNode *head ; >
39
40 /* ... */
};
79

List.h

79

#pragma once

class List {
public:
/* ... */

void insertAtFront (const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

}i
ListNode *head ;

/* ... */

What is missing in this code?

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
[* ... */

void insertAtFront(const T& t);

private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data(data), next (NULL) { }

i g
ListNode *head;;
/* ... */

¥

#include "List.hpp"

OWCoOoOJdJonUldWN =

void List<T>::insertAtFront (const T& t)
{

Linked List: insertAtFront(data)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

0

List.h

List.hpp

#pragma once

template <typename T>
class List {
public:
/* ... */
private:
class ListNode {
T & data;
ListNode * next;
ListNode (T & data)
data (data) , next (NULL) { }

}i
ListNode *head ;
/* ... */

}i

#include "List.hpp"

WO dWN =

template <typename T>

void List<T>::insertAtFront (const T& t)

{

ListNode *tmp = new ListNode (data) ;

tmp->next = head ;

head = tmp;

Linked List: insert(data, index)

head r

C

'Y

S

'Y

">

2

'Y

’»

2

'Y

0

Linked List: _index(index)

head r

C

'Y

S

'Y

">

2

'Y

0

Linked List: index(index) ?é'{f-’-lil

head c|l & s | & |2 & 26 Eﬁ
Join Code: 225

What should the return type of index() be?

[template <class T>]
(AT & (B) ListNode

(C) ListNode * (D) ListNode *&

List.hpp

58 | template <typename T>
59| typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

List.hpp

58 | template <typename T>
59 | typename List<T>::ListNode *& List<T>:: index(unsigned index) {

60 return index(index, head)
61|}

template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index, ListNode *& root) {

if (index == | | node == nullptr) {

return node;

}

return index(index - 1, root -> next);

List.hpp

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>:: index(unsigned index) ({
if (index == 0) { return head; }
else {
ListNode *curr = head;
for (unsigned i = 0; i < index - 1; i++) {
curr = curr->next;

OWCoOoOJdJonUldWDN =

}

10 return curr->next;

11 }
12|}

Which solution is better (iterative or recursive)?

Linked List: insert(data, index) @

">

head € | c | € s | & |6 2|6 |s|é&

1) Get reference to previous node’s next
ListNode *& curr = index(index);

2) Create new ListNode

ListNode * tmp = new ListNode (data) ;
3) Update new ListNode’s next

tmp->next = curr;

4) Modify the previous node to point to new ListNode

curr = tmp;

WO dWN =

List.hpp

template <typename T>
void List<T>::insertAtFront (const T& t)

{
ListNode *tmp = new ListNode(t) ;
tmp->next = head ;

head = tmp;

WO dWN =

template <typename T>
void List<T>::insert(const T & data,
unsigned index) ({

ListNode *& curr = index(index) ;

ListNode * tmp = new ListNode (data) ;

tmp->next = curr;

curr = tmp;

Next Time: List Random Access []

Given a list L, what operations canwedoon L[]?

What return type should this function have?

