
Department of Computer Science

Data Structures
Lists and List ADT

August 29, 2025 CS 225
Brad Solomon

CS 225 Honors Class Registration Fixed

1. Register for CS 225 section AH (CRN 75824)

2. Fill out the appropriate Honors Credit Learning Agreement

James Scholar Enrollment:

Check your individual college for James Scholar deadlines

Standard Enrollment:

1. Register for CS 199-225 (CRN 40944)

This is a pass-fail grade and a 0-credit course

No class Labor Day (Monday September 1st)
Things to keep in mind for next week:

- Study for exam 0

- Complete POTDs for extra credit

- Set up your own machine!

- Join the CS 225 Discord!

- Ask questions anonymously in class!

- Request start of lecture music

Staff office hours start Tuesday**

Learning Objectives

Define the functions and operations of the List ADT

Discuss list implementation strategies

Explore how to code and use a linked list

Practice fundamentals of C++ in the context of lists

Last time: Memory management

Local memory on the stack is managed by the computer

Heap memory allocated by new and freed by delete

Pass by value makes a copy of the object

Pass by pointer can be dereferenced to modify an object

Pass by reference modifies the object directly

Memory Management - Ownership
Pass by Value:

Pass by Pointer to Value:

Pass by Reference:

Ex: addBook(Book book)

Ex: addBook(Book* book)

Ex: addBook(Book& book)

A local copy of the original

An address on the heap

An alias to an existing variable

OriginalCopy

P 0x001

X=Local var Y
is X

Templates
A way to write generic code whose type is determined
during completion

Templates
A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

Templates
A way to write generic code whose type is determined
during completion

1. Templates are a recipe for code using generic types

2. The compiler uses templates to generate C++ code when needed

T sum(T a, T b){
...
}

T max(T a, T b) {
 T result;
 result = (a > b) ? a : b;
 return result;
}

template1.cpp
1
2
3
4
5
6
7

template <typename T>

Templates are very useful!

What is your favorite data structure?

A) Lists B) Trees

C) Graphs D) Hash Tables

5

4

6

v

u

w

a c

b
z

d

0 Apple
1 ∅

2 Pear

Join Code: 225

Your favorite data structure: Trees

5

15 9

25

4

6

7 13

1116 1214

Your favorite data structure: Trees

5

15 9

25

4

6

7 13

1116 1214

4 5 6 15 9 7 20 16 25 14 12 11

1 2 3 4 5 6 7 8 9 10 11 120 13 1514

-3 8

23

25 31

42

43 55

80

90

Lists

Your favorite data structure: Graphs

v

u

w

a c

b
z

d

Your favorite data structure: Graphs

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

Lists

Your favorite data structure: Hash Tables

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅
10 ∅

Greg
A
∅

Bret
A-

Betty
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

1
0
1
0
1
0
0
1
0
0
0

H = {h1, h2, . . . , hk}

So 100% of people are excited about lists!

A) Lists B) Trees

C) Graphs D) Hash Tables

5

4

6

v

u

w

a c

b
z

d

0 Apple
1 ∅

2 Pear

Note: Not every tree / graph / hash is actually a list :)

Abstract Data Types
A way of describing a data type as a combination of:

Data being stored by the data type

Operations that can be performed on the data type

The actual implementation details of the ADT aren’t relevant!

List ADT (What do we want our list to do?)

List ADT
A list is an ordered collection of items

Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable

A minimal set of operations (that can be used to create all others):
1. Insert

2. Delete

3. isEmpty

4. getData

5. Create an empty list

List Implementations
1.

2.

Linked List

C S 2 2 5
Ø

class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) : data(data), next(NULL) { }
};

List.h
28
29
30
31
32

Why is data stored as a reference?

Why is next a pointer?

#pragma once

class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

How do I access list given head_?

C Shead_

#pragma once

class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

What is missing in this code?

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 void insertAtFront(const T& t);

 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

#include "List.hpp"

List.h
1
2
3
4
5
…

28
29
30
31
32
33
34
35
36
37
38
39
40
…
…
…

79
79

void List<T>::insertAtFront(const T& t)
{

}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Linked List: insertAtFront(data)

C S 2 2 5
Ø

head_

#pragma once

template <typename T>
class List {
 public:
 /* ... */
 private:
 class ListNode {
 T & data;
 ListNode * next;
 ListNode(T & data) :
 data(data), next(NULL) { }
 };

 ListNode *head_;

 /* ... */

};

#include "List.hpp"

List.h
1
2
3
4
5
…

28
29
30
31
32

33
34
35
36
37
38
39
…
…

79
79

template <typename T>
void List<T>::insertAtFront(const T& t)
{

 ListNode *tmp = new ListNode(data);

 tmp->next = head_;

 head_ = tmp;

}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

Linked List: _index(index)

C S 2 2 5
Ø

head_

Linked List: _index(index)

What should the return type of _index() be?

(A) T & (B) ListNode

(C) ListNode * (D) ListNode *&

[template <class T>]

C S 2 2head_
Join Code: 225

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index){
	 return _index(index, head_)
}

List.hpp
58
59
60
61

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){

}

63
64
65
66
67
68
69
70
71
72
73

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index){
	 return _index(index, head_)
}

List.hpp
58
59
60
61

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){

if (index == 0 || node == nullptr){
 return node;
}

return _index(index - 1, root -> next);

}

63
64
65
66
67
68
69
70
71
72
73

// Iterative Solution:
template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index) {
 if (index == 0) { return head; }
 else {
 ListNode *curr = head;
 for (unsigned i = 0; i < index - 1; i++) {
 curr = curr->next;
 }
 return curr->next;
 }
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12

Which solution is better (iterative or recursive)?

Linked List: insert(data, index)

C S 2 2 5
Ø

head_

1) Get reference to previous node’s next

 ListNode *& curr = _index(index);

2) Create new ListNode

 ListNode * tmp = new ListNode(data);

3) Update new ListNode’s next

 tmp->next = curr;

4) Modify the previous node to point to new ListNode

 curr = tmp;

template <typename T>
void List<T>::insert(const T & data,
unsigned index) {

 ListNode *& curr = _index(index);

 ListNode * tmp = new ListNode(data);

 tmp->next = curr;

 curr = tmp;
}

List.hpp
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

template <typename T>
void List<T>::insertAtFront(const T& t)
{
 ListNode *tmp = new ListNode(t);

 tmp->next = head_;

 head_ = tmp;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Next Time: List Random Access []

Given a list L, what operations can we do on L[]?

What return type should this function have?

