Data Structures

Array Lists

CS 225 September 8, 2025
Brad Solomon

A

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Course Policy Reminders

Request an extension? _——> Extension Request Form

Missed an exam? (5 998 @y

° \ ¥ —
Want to email a professorabout the class?

T ==

https://docs.google.com/forms/d/e/1FAIpQLSeVETJadkC-bg0nEQbKuL6qRK0U4Pl0uLtUetCZpmsMkRe_ww/viewform?usp=dialog

[N o :
T e

}v

o
S
i
Q.
-
3=
-
O
)
S
©
S
-
O
>\
)
w
O
ol

Learning Objectives

Discuss data variables for implementing array lists

\

Review array list implementations éj
/_/—\, I

Discuss amortized analysis —

Consider extensions to lists

1
Cor \/‘/eél\f_s AC*\/

List Implementations

1. Linked List

head\
c € s | &6 216 |2 & 5|6

—None

2. Array List

Linked List Runtimes >

head rrep o Uk

| P T
\/VA\A,—» —None

c &7/ sN 2 [6 2|6 |5 €
)EGSY to ml(\ly

KnaMn ld rq'\'-\O/\

@Front @RefPointe;' @Index
- /\/\/_
Insert O(1) O(1) O(n)
v
_

Delete O(1) O(1) O(n)

Array List

lﬂ/‘ ate, 7(\/ 2
y U ¢
7|

AR
o

Hh tWag -hpe |

Size
An array is allocated as continuous menzmrl. 1N

- -

Three values are necessary for efficient array usage:

\

1) Pala — fly Stak s of arey (poater)

2) $128 — dhe Curcaal H F (Ttms N my array

3) (aprely — Yhe ol F of qloahd spars

[] L\
Array List o0 9 9 n 0 ae 3y e
Q?:AT *_7i—4 ------

‘T?quis \T‘ T

data size capacit
In C tor is implemented I
nC++, Vv Fi1sim men as. :
O 5 IMPIEMEMIE A Thece o pavters! e o
)D S d 47("..4 Ga'}/(;_s
1) Data: Stored as a pointer to array start | | |
A VL st ey,

2) Size: Stored as a pointer to the next available space
LN~

3) Capacity: Stored as a pointer past the end of the array
|

List.h 0.0 g - Ox I

#pragma once

class List {
public:

[* -=- */ f[\ T

25 private:

1
2
3 | template <typename T> A B C
4
5

26 T *data ; dﬁ*Q Size
27

28 T *size ; .

29 |/T".L‘7

30 T *capacity ;

: Th!s fnowb N Mepdy q)éfl*ss
[* ——= */ P+t , € "

Iy

G

If | want to know the number of items in the array: S,z¢ - acr’% -

‘of F ol T 0x6

K__) {

gl'.ZQ o (1'\,1)6’} 3’6 - 3

List.h
#pragma once
template <typename T>
class List {
public:
[* --- */
private:
T *data ;
T *size ;
T *capacity ;

[* ——= */
Iy

How do | know if I'm at capacity? <ize, = = @Gpacdy -

DN

A B C D E F
‘1\‘&‘ . 0\ ‘*
SThe = = @Yty
Eﬂﬂ_ Ykﬁ&ﬂf
Ty
.4
+£Sh4

Array List: []

Y Ci)

LN Y
- | C S 2 2
S{L\q S ze OF (=)< ;\ (*)‘"‘1 + Qﬂt"F /J(:‘\-PQ ’ C‘AB’X
- Tyee
- & Padt \
B uh pas Q1) e

\'\'(W: 30'*51 - :/K)QX }

k} Okfroa\/ 1’)&5 G‘H"\\(l\fffl— thc}mq
a((ess)

Array List: insertFront(data)

A S
C S 2 2 5

() N

o) Yo ook ap feant Titn EREENE

Ef COwse We Megt Maye q\(Fms

Eon ey sy, ek Ged s Oln)

Array List: insertBack(data)

cls|2]2]s[®
ﬂ\ Jerze
S, Ze L);e next <= lably Sparo

Tasort veps gy Size _

o)

Kfy (aveaY, Oy True € ot at (qu(ﬁ\/

skefﬂ

Array List: insert(data, index)

C S 2 2 5

oA LA

A T
Al n\ O(.l)
‘gart ¥roat N Béul\

<éc&c, /())
(bavs ;3

(e Pt 'hM at <yze_ —1
Array List: Not at capacity / e @

/ fﬂlfl‘(

~
){r sl2]2]s
S = A P
@Front @Back @Index
Insert O (1/\) O I> ® /”)
k,_,/
Delete O(m) J; |> O(”')

< SN—]

Array List: addspace(data)

N|of|s|P|Aa]c]|eE 4

\/‘/4 /Mus'\' Q\\d(qL(N?W Ihemory Caper ‘\}q/

] -

O\J gl ZQ Sdm('ﬂ, g MJ’e

Resize Strategy: +2 elements every time

AlE

NRYY
AT r & .
AV
™

A
\%
A

Resize Strategy: irg elements every time

A

B
v

N\

B
|
B

ﬁ(‘—ﬁ

1) How many copy calls per reallocation?
Mg

Tor ¢t “gllo et o Jo (@p¥

2) Total reallocations fow

UJ(Q_

@

m . m | =
T

A//; ffa“c)(ql S

Resize Strategy: +2 elements every time

A

B

A

B

C

D

A

B

C

D

E

F

1) How many copy calls per reallocation?

L
For reallocation i, 2i copy calls are made

2) Total reallocations for N objects?

A

B

C

D

E

F

G

H

N
Let k be the number of reallocs, k = E

K
Total number of copy calls: & &: — K(}TH);’ K;)Jrk g
(=1

—_—

Resize Strategy: +2 elements every time
1) How many copy calls per reallocation?

A B
e b ‘ For reallocation i, 2i copy calls are made
A B |C|D ¢
SN S ey P : :
e Telol s 2) Total reallocations for N objects?
g N
Ll L L LU Let k be the number of reallocs, k = —
A B C D E F G H 2

k
Total number of copy calls: Z Di=kk+ 1) =k>+k
i=1

N? + 2N
4

.. For N objects:

Resize Strategy: +2 elements every time @

N? + 2N

Total copies for N inserts:

W T.‘mz for one {nsart
Amortized: e tuwetd N s BigO: J(n)

G el Gmant F ol aviesed oW par F/@ /%\ 2y €S YA
(Celly,
i J t1 allec :

ol |
220) /{\/“ ’}’,.ZZ,L el)

D oY)

Resize Strategy: x2 elements every time
i

>
w T W

Resize Strategy: x2 elements every time

=0

.
!

o)

1) How many copy calls per reallocation?

A Ceallac ¢ | ()\C (o\)f% e Ma)e

2) Total reallocations for N objects?

A
— N
&je—
A | B
UL &
A | B | C
L1 U
B

A

NS gl = ke Tign]

Resize Strategy: x2 elements every time

A

A

B

A

B

C

D

1) How many copy calls per reallocation?

For reallocation i,@opy calls are made
/""r\/ pore Ops T)

2) Total reallocations for N objects? °”

(eq|\d¢

A

B

C

D

E

F

k = final realloc needed = [log,n]
G H -

/

Feq\\oc lec <

Total number of copy calls:

(O’\“’\br On WO &Né\my

Resize Strategy: x2 elements every time

A

A

B

A

B

C

D

1) How many copy calls per reallocation?

For reallocation i, 2! copy calls are made

2) Total reallocations for N objects?

A

B

C

D

E

F

G

H

k = final realloc needed = [log,n]

k
Total number of copy calls: Z 2t =2k _q

1=0

... For N objects: 2n — 1

Resize Strategy: x2 elements every time

Total copies for n inserts: 2n — 1

Amortized: Big O:

List Implementation
_ [simgiylinkedlst JAmay

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value

Thinking critically about lists: tradeoffs

The implementations shown are foundational (simple).

Can we make our lists better at some things? What is the cost?

Thinking critically about lists: tradeoffs

Getting the size of a linked list has a Big O of:

R

cl &6 sl 6 |2 6 |76 7 | &

head
_—>None

Thinking critically about lists: tradeoffs

head _ r

head r

'Y

'Y

'Y

6

0

S/,

Thinking critically about lists: tradeoffs

14

14

Thinking critically about lists: tradeoffs

head _ 1

'Y

/Q

I

«

'Y

'Y

’>¢

\

Thinking critically about lists: tradeoffs

When we discuss data structures, consider how they can
be modified or improved!

Next time: Can we make a’list’ that is O(1) to insert and
remove? What is our tradeoff in doing so?

