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Learning Objectives

Discuss data variables for implementing array lists

\

Review array list implementations éj
/\_/—\, I

Discuss amortized analysis —

Consider extensions to lists
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List Implementations

1. Linked List
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2. Array List




Linked List Runtimes >
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Array List
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An array is allocated as continuous menzmrl. 1N
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Three values are necessary for efficient array usage:
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1) Data: Stored as a pointer to array start | | |
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2) Size: Stored as a pointer to the next available space
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3) Capacity: Stored as a pointer past the end of the array
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List.h 0.0 g - Ox I

#pragma once

class List {
public:

[* -=- */ f[\ T

25 private:

1
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3 | template <typename T> A B C
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26 T *data ; dﬁ*Q Size
27

28 T *size ; .

29 |/T".L‘7

30 T *capacity ;
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List.h
#pragma once
template <typename T>
class List {
public:
[* --- */
private:
T *data ;
T *size ;
T *capacity ;
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Array List: [ ]
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Array List: insertFront(data)
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Array List: insertBack(data)
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Array List: insert(data, index)
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Array List: addspace(data)
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Resize Strategy: +2 elements every time
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Resize Strategy: irg elements every time

A

B
v

N\

B
|
B

ﬁ(‘—ﬁ

1) How many copy calls per reallocation?
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Resize Strategy: +2 elements every time
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1) How many copy calls per reallocation?
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For reallocation i, 2i copy calls are made

2) Total reallocations for N objects?
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Resize Strategy: +2 elements every time
1) How many copy calls per reallocation?
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e b ‘ For reallocation i, 2i copy calls are made
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Resize Strategy: +2 elements every time @

N? + 2N

Total copies for N inserts:
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Resize Strategy: x2 elements every time
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Resize Strategy: x2 elements every time
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1) How many copy calls per reallocation?
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Resize Strategy: x2 elements every time
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Resize Strategy: x2 elements every time
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For reallocation i, 2! copy calls are made
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... For N objects: 2n — 1



Resize Strategy: x2 elements every time

Total copies for n inserts: 2n — 1

Amortized: Big O:




List Implementation
_ [simgiylinkedlst JAmay

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value




Thinking critically about lists: tradeoffs

The implementations shown are foundational (simple).

Can we make our lists better at some things? What is the cost?




Thinking critically about lists: tradeoffs

Getting the size of a linked list has a Big O of:
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Thinking critically about lists: tradeoffs
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Thinking critically about lists: tradeoffs
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Thinking critically about lists: tradeoffs
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Thinking critically about lists: tradeoffs

When we discuss data structures, consider how they can
be modified or improved!

Next time: Can we make a’list’ that is O(1) to insert and
remove? What is our tradeoff in doing so?




