Data Structures

Array Lists

CS 225 September 9, 2024
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Course Policy Reminders

Request an extension? Extension Request Form

Missed an exam?

Want to email a professor about the class?

https://docs.google.com/forms/d/e/1FAIpQLSeVETJadkC-bg0nEQbKuL6qRK0U4Pl0uLtUetCZpmsMkRe_ww/viewform?usp=dialog

[N o :
T e

}v

o
S
i
Q.
-
3=
-
O
)
S
©
S
-
O
>\
)
w
O
ol

Learning Objectives

Discuss data variables for implementing array lists
Review array list implementations

Discuss amortized analysis

Consider extensions to lists

List Implementations

1. Linked List

head\
c € s | &6 216 |2 & 5|6

—None

2. Array List

Linked List Runtimes

head\
cl 6 |s|& 6 2|6 |s5|é&

—None

@Front @RefPointer @Index

Insert O(1) O(1) O(n)

Delete O(1) O(1) O(n)

Array List

An array is allocated as continuous memory.

Three values are necessary for efficient array usage:

Array List

f ! f

data size capacity

In C++, vector is implemented as:
1) Data: Stored as a pointer to array start
2) Size: Stored as a pointer to the next available space

3) Capacity: Stored as a pointer past the end of the array

List.h

1 | #pragma once
2

3 | template <typename T> A B C
4 | class List {
5 | public:

[* -—= */
25 | private:
26 T *data ;
27
28 T *size ;
29

30 T *capacity ;

[* ——= %/

Iy

If | want to know the number of items in the array:

List.h
1 | #pragma once
2
3 | template <typename T> A
4 | class List {
5 | public:
[* --- */

25 private:
26 T *data ;

28 T *size ;
30 T *capacity ;

[* ——= %/

Iy

How do | know if I'm at capacity?

Array List: []

C S 2

Array List: insertFront(data)

C S 2 2 5

Array List: insertBack(data)

C S 2 2 5

Array List: insert(data, index)

C S 2 2 5

Array List: Not at capacity

C

S

2

2

5

Insert

Delete

@Front

@Back

@Index

Array List: addspace(data)

N O S P A C E

Resize Strategy: +2 elements every time

Resize Strategy: +2 elements every time

A

B

1) How many copy calls per reallocation?

2) Total reallocations for N objects?

Resize Strategy: +2 elements every time
1) How many copy calls per reallocation?

A B

For reallocation i, 2i copy calls are made
A B C D

2) Total reallocations for N objects?
A B C D E F

Let k be the number of reallocs, k =
A B C D E F G H

N
2

Total number of copy calls:

Resize Strategy: +2 elements every time
1) How many copy calls per reallocation?

A B

For reallocation i, 2i copy calls are made
A B C D

2) Total reallocations for N objects?
A B C D E F

Let k be the number of reallocs, k =
A B C D E F G H

N
2

k
Total number of copy calls: Z Di=kk+ 1) =k>+k
i=1
N? +2N
4

... For N objects:

Resize Strategy: +2 elements every time @

N? + 2N

Total copies for N inserts:

Amortized: Big O:

Resize Strategy: x2 elements every time

Resize Strategy: x2 elements every time
1) How many copy calls per reallocation?

A

2) Total reallocations for N objects?

Resize Strategy: x2 elements every time

A

A

B

A

B

C

D

1) How many copy calls per reallocation?

For reallocation i, 2! copy calls are made

2) Total reallocations for N objects?

A

B

C

D

E

F

G

H

k = final realloc needed = [log,n]

Total number of copy calls:

Resize Strategy: x2 elements every time

A

A

B

A

B

C

D

1) How many copy calls per reallocation?

For reallocation i, 2! copy calls are made

2) Total reallocations for N objects?

A

B

C

D

E

F

G

H

k = final realloc needed = [log,n]

k
Total number of copy calls: Z 2t =2k _q

1=0

... For N objects: 2n — 1

Resize Strategy: x2 elements every time

Total copies for n inserts: 2n — 1

Amortized: Big O:

List Implementation
_ [simgiylinkedlst JAmay

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value

Thinking critically about lists: tradeoffs

The implementations shown are foundational (simple).

Can we make our lists better at some things? What is the cost?

Thinking critically about lists: tradeoffs

Getting the size of a linked list has a Big O of:

R

cl &6 sl 6 |2 6 |76 7 | &

head
_—>None

Thinking critically about lists: tradeoffs

head _ r

head r

'Y

'Y

'Y

6

0

S/,

Thinking critically about lists: tradeoffs

14

14

Thinking critically about lists: tradeoffs

head _ 1

'Y

/Q

I

«

'Y

'Y

’>¢

\

Thinking critically about lists: tradeoffs

When we discuss data structures, consider how they can
be modified or improved!

Next time: Can we make a’list’ that is O(1) to insert and
remove? What is our tradeoff in doing so?

