
Department of Computer Science

Data Structures
Array Lists

September 9, 2024 CS 225
Brad Solomon

Course Policy Reminders

Request an extension?

Missed an exam?

Want to email a professor about the class?

Extension Request Form

https://docs.google.com/forms/d/e/1FAIpQLSeVETJadkC-bg0nEQbKuL6qRK0U4Pl0uLtUetCZpmsMkRe_ww/viewform?usp=dialog

Post your art on #mp-art!

Learning Objectives

Discuss data variables for implementing array lists

Review array list implementations

Consider extensions to lists

Discuss amortized analysis

List Implementations
1. Linked List

2. Array List

C S 2 2 5
None

C S 2 2 5

head

Linked List Runtimes

C S 2 2 5
None

head

Insert

Delete

@Front @Index@RefPointer

O(1)

O(1)

O(1)

O(1)

O(n)

O(n)

Array List

Three values are necessary for efficient array usage:

1)

2)

3)

An array is allocated as continuous memory.

Array List
A B C D E

1) Data: Stored as a pointer to array start

2) Size: Stored as a pointer to the next available space

In C++, vector is implemented as:

3) Capacity: Stored as a pointer past the end of the array

data_ size_ capacity_

#pragma once

template <typename T>
class List {
public:
 /* --- */
private:
 T *data_;

 T *size_;

 T *capacity_;

 /* --- */
};

List.h
1
2
3
4
5
…

25
26
27
28
29
30
…

A B C

If I want to know the number of items in the array:

#pragma once

template <typename T>
class List {
public:
 /* --- */
private:
 T *data_;

 T *size_;

 T *capacity_;

 /* --- */
};

List.h
1
2
3
4
5
…

25
26
27
28
29
30
…

A B C D E F

How do I know if I’m at capacity?

Array List: []

C S 2 2 5

Array List: insertFront(data)

C S 2 2 5

Array List: insertBack(data)

C S 2 2 5

Array List: insert(data, index)

C S 2 2 5

Array List: Not at capacity

C S 2 2 5

Insert

Delete

@Front @Index@Back

Array List: addspace(data)

N O S P A C E

Resize Strategy: +2 elements every time

Resize Strategy: +2 elements every time
1) How many copy calls per reallocation?

2) Total reallocations for N objects?

A B

A B C D

A B C D

A B C D

E F

E F G H

Resize Strategy: +2 elements every time
A B

A B C D

A B C D

A B C D

E F

E F G H

1) How many copy calls per reallocation?

2) Total reallocations for N objects?

For reallocation i, 2i copy calls are made

Let k be the number of reallocs, k =
N
2

Total number of copy calls:

Resize Strategy: +2 elements every time
A B

A B C D

A B C D

A B C D

E F

E F G H

1) How many copy calls per reallocation?

2) Total reallocations for N objects?

For reallocation i, 2i copy calls are made

Let k be the number of reallocs, k =
N
2

Total number of copy calls:
k

∑
i=1

2i = k(k + 1) = k2 + k

… For N objects: N2 + 2N
4

Resize Strategy: +2 elements every time

Total copies for N inserts:
N2 + 2N

4

Amortized: Big O:

Resize Strategy: x2 elements every time

Resize Strategy: x2 elements every time
1) How many copy calls per reallocation?

2) Total reallocations for N objects?

A

A B

A B C D

A B C D E F G H

Resize Strategy: x2 elements every time
1) How many copy calls per reallocation?

2) Total reallocations for N objects?

A

A B

A B C D

A B C D E F G H

Total number of copy calls:

For reallocation i, copy calls are made2i

k = final realloc needed = ⌈log2n⌉

Resize Strategy: x2 elements every time
1) How many copy calls per reallocation?

2) Total reallocations for N objects?

A

A B

A B C D

A B C D E F G H

Total number of copy calls:

For reallocation i, copy calls are made2i

k

∑
i=0

2i = 2k+1 − 1

k = final realloc needed = ⌈log2n⌉

2n − 1… For N objects:

Resize Strategy: x2 elements every time
Total copies for n inserts: 2n − 1

Amortized: Big O:

List Implementation
Singly Linked List Array

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value

Thinking critically about lists: tradeoffs
The implementations shown are foundational (simple).

Can we make our lists better at some things? What is the cost?

Thinking critically about lists: tradeoffs

C S 2 7 7
None

head

Getting the size of a linked list has a Big O of:

Thinking critically about lists: tradeoffs

1 2 3 4 5
Ø

head_

4 2 5 3 1
Ø

head_

Thinking critically about lists: tradeoffs

2 7 5 9 7 14 1 0 8 3

0 1 2 3 5 7 7 8 9 14

Thinking critically about lists: tradeoffs

1 2 3 4 5
Ø

head_

Ø

Thinking critically about lists: tradeoffs
When we discuss data structures, consider how they can
be modified or improved!

Next time: Can we make a ‘list’ that is O(1) to insert and
remove? What is our tradeoff in doing so?

