

Data Structures

Tree Definitions

CS 225

September 15, 2025

Brad Solomon & Harsha Tirumala

Department of Computer Science

MP_Lists out now!

MP submission on PL has two separate submissions

The extra credit portion will only test part 1

Completion of the extra credit portion by the following Monday is worth 4 points

Exam 1 (9/17 — 9/19)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam is out on PL now

Topics covered can be found on website

Register now

<https://courses.engr.illinois.edu/cs225/fa2025/exams/>

Learning Objectives

Review trees and binary trees

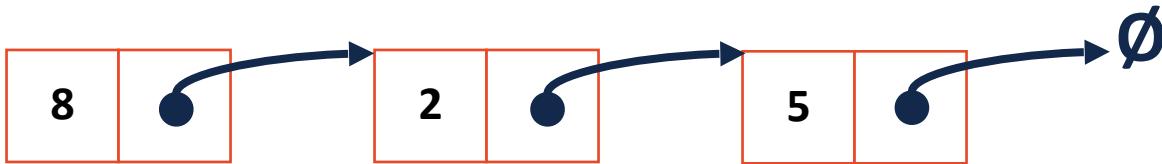
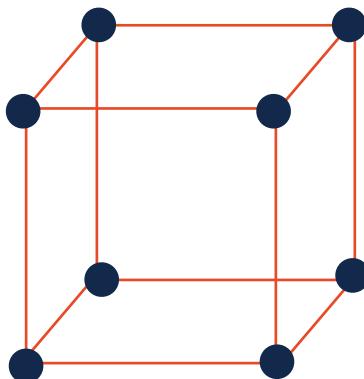
Practice tree theory with recursive definitions and proofs

Discuss the tree ADT

Explore tree implementation details

Iterators

We want to be able to loop through all elements for any underlying implementation in a systematic way



Cur. Location	Cur. Data	Next
<code>ListNode *</code> <code>curr</code>	<code>Curr->data</code>	<code>Curr->next</code>
<code>unsigned</code> <code>index</code>	<code>data[index]</code>	<code>index++</code>
<code>Some form</code> <code>(x, y, z)</code>	<code>???</code>	<code>???</code>

Iterators

For a class to implement an iterator, it needs two functions:

Iterator begin()

Returns an Iterator object pointing at the 'first item'

Iterator end()

Returns an Iterator object pointing one entry past end of dataset

Iterators

The actual iterator is defined as a class **inside** the outer class:

1. It must be of base class **std::iterator**

2. It must implement at least the following operations:

Iterator& operator ++()

const T & operator *()

bool operator !=(const Iterator &)

Iterators

Here is a (truncated) example of an iterator:

```
1 template <class T>
2 class List {
3
4     class ListIterator : public
5         std::iterator<std::bidirectional_iterator_tag, T> {
6             public:
7
8                 ListIterator& operator++();
9
10                ListIterator& operator--();
11
12                bool operator!=(const ListIterator& rhs);
13
14                const T& operator*();
15
16                ListIterator begin() const;
17
18                ListIterator end() const;
19 }
```

```
1 #include <list>
2 #include <string>
3 #include <iostream>
4
5 struct Animal {
6     std::string name, food;
7     bool big;
8     Animal(std::string name = "blob", std::string food = "you", bool big = true) :
9         name(name), food(food), big(big) { /* nothing */ }
10 }
11
12 int main() {
13     Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
14     std::vector<Animal> zoo;
15
16     zoo.push_back(g);
17     zoo.push_back(p);    // std::vector's insertAtEnd
18     zoo.push_back(b);
19
20     for ( std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it ) {
21         std::cout << (*it).name << " " << (*it).food << std::endl;
22     }
23
24     return 0;
25 }
```



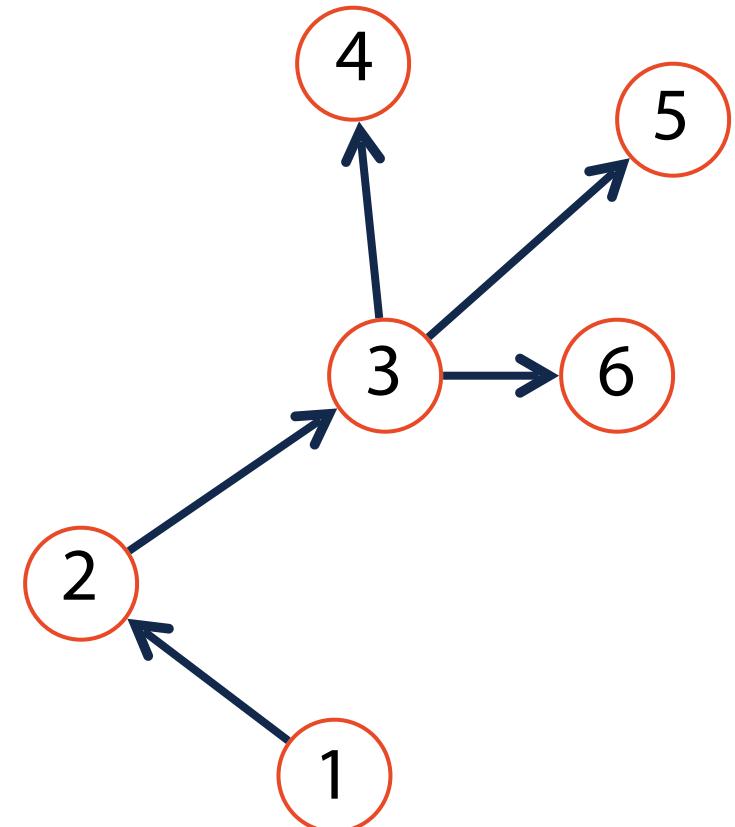
```
1 std::vector<Animal> zoo;
2
3
4
5 /* Full text snippet */
6
7     for ( std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it ) {
8         std::cout << (*it).name << " " << (*it).food << std::endl;
9     }
10
11
12 /* Auto Snippet */
13
14     for ( auto it = zoo.begin(); it != zoo.end; ++it ) {
15         std::cout << (*it).name << " " << (*it).food << std::endl;
16     }
17
18 /* For Each Snippet */
19
20     for ( const Animal & animal : zoo ) {
21         std::cout << animal.name << " " << animal.food << std::endl;
22     }
23
24
25
```

Trees

A non-linear data structure defined recursively as a collection of nodes where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

- 1) Acyclic — No path from node to itself
- 2) Rooted — A specific node is labeled root

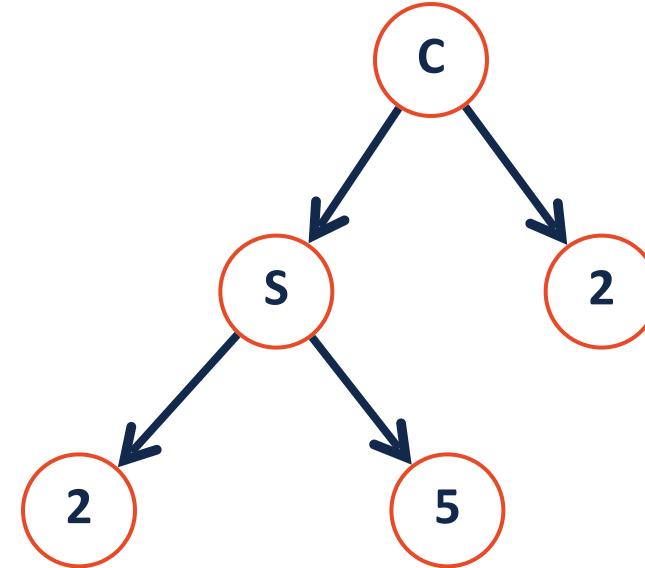


Binary Tree

A **binary tree** is a tree T such that:

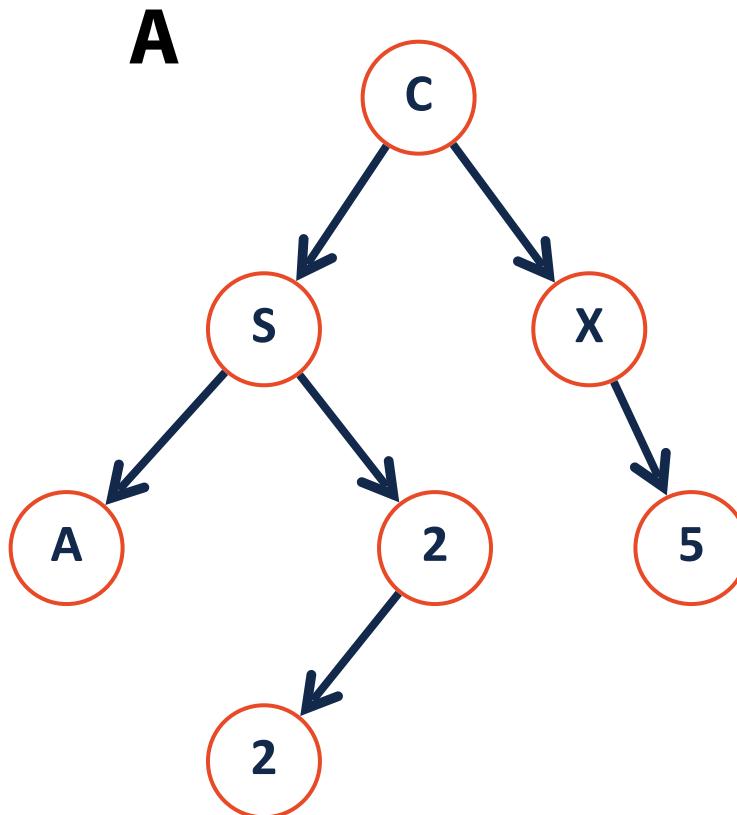
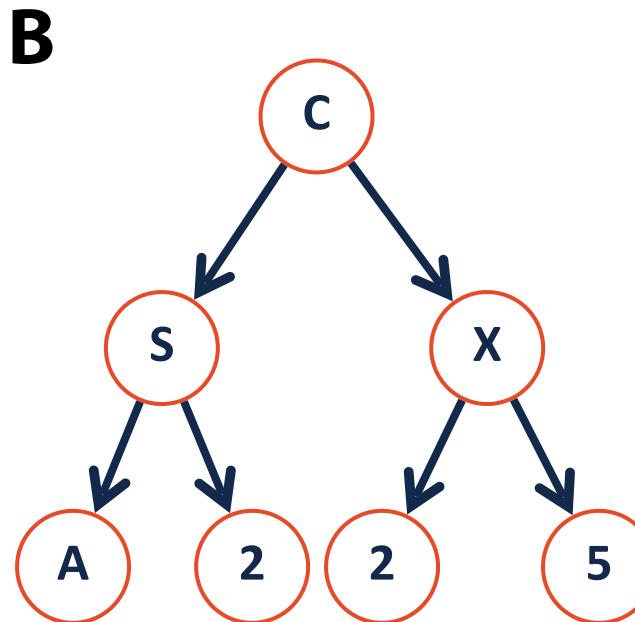
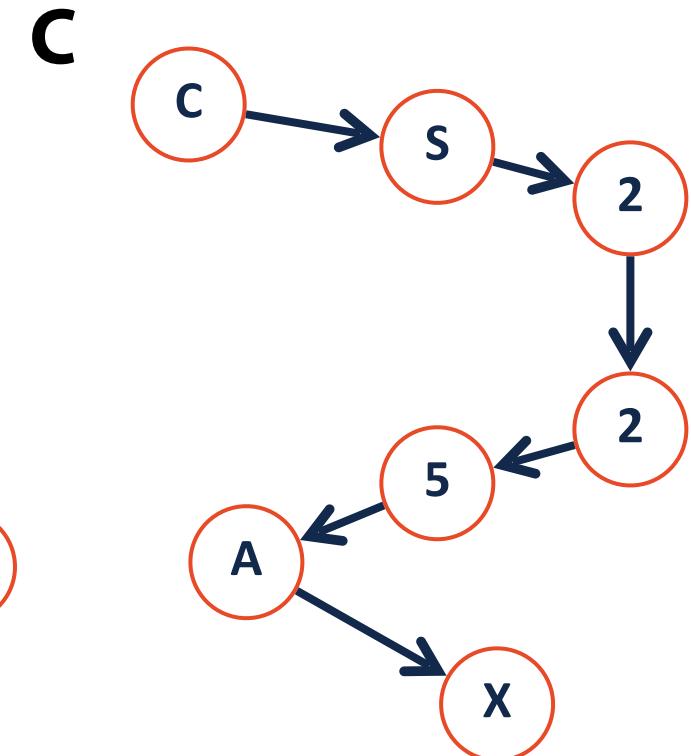
$$1. T = \emptyset$$

$$2. T = (data, T_L, T_R)$$



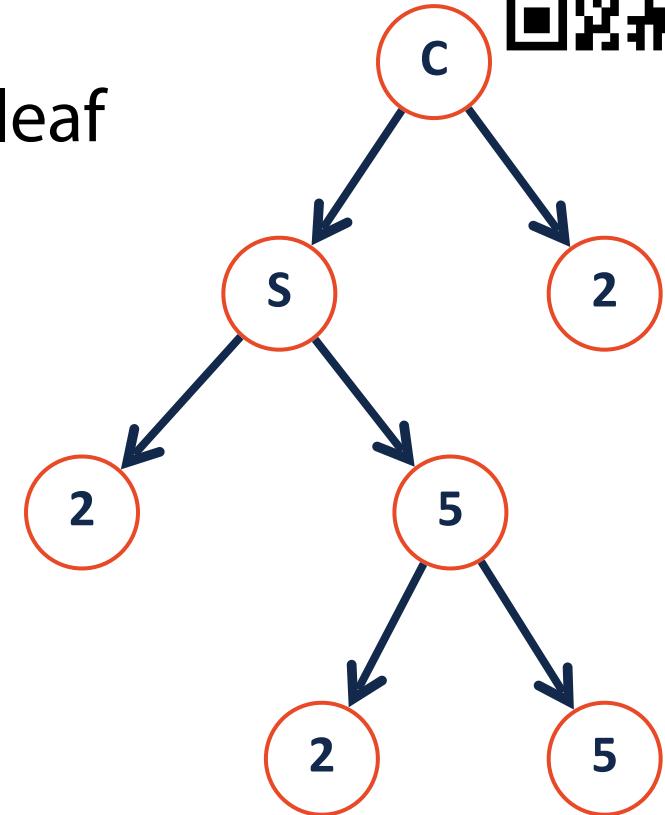
Which of the following are binary trees?

Join Code: 225



Binary Tree Height

Height: The length of the longest path from root to leaf



What is the height of a tree with **zero** nodes?

Binary Tree Height

height(T) = 1 + max(height(T_L), height(T_R))

Base Case: The height of the empty tree is -1

Recursive Step: Get height of left and right subtrees

Combining: Tree height is 1 plus the max of left or right height

Binary Tree

Lets define additional terminology for different **types** of binary trees!

1.

2.

3.

Binary Tree: full

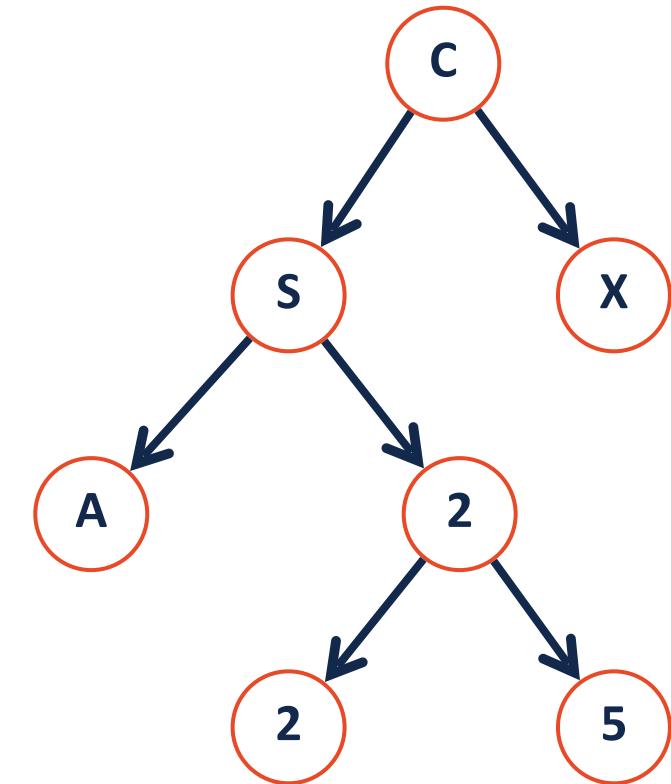
A **full tree** is a binary tree where every node has either 0 or 2 children

A tree **F** is **full** if and only if:

1.

2.

3.

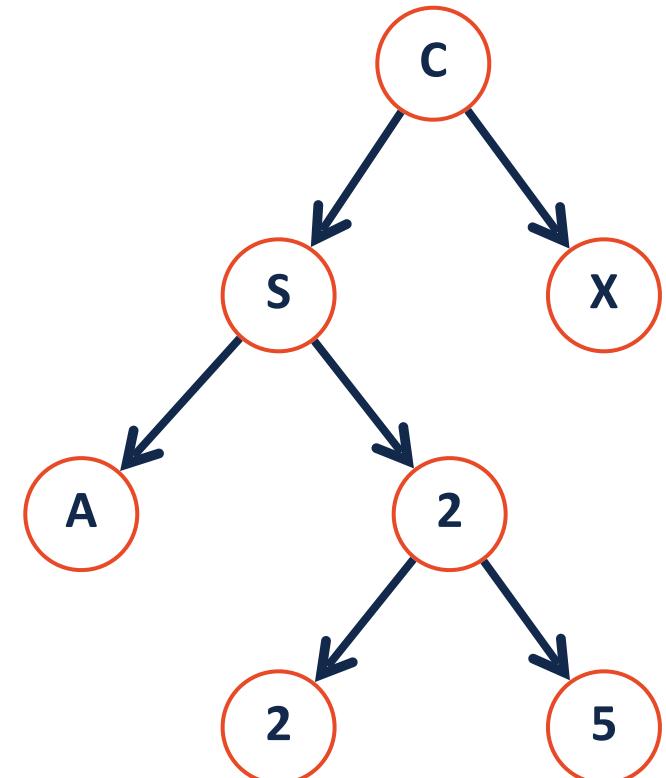


Binary Tree: full

A **full tree** is a binary tree where every node has either 0 or 2 children

A tree F is **full** if and only if:

1. $F = \emptyset$
2. $F = (data, \emptyset, \emptyset)$
3. $F = (data, F_l \neq \emptyset, F_r \neq \emptyset)$



Binary Tree: perfect

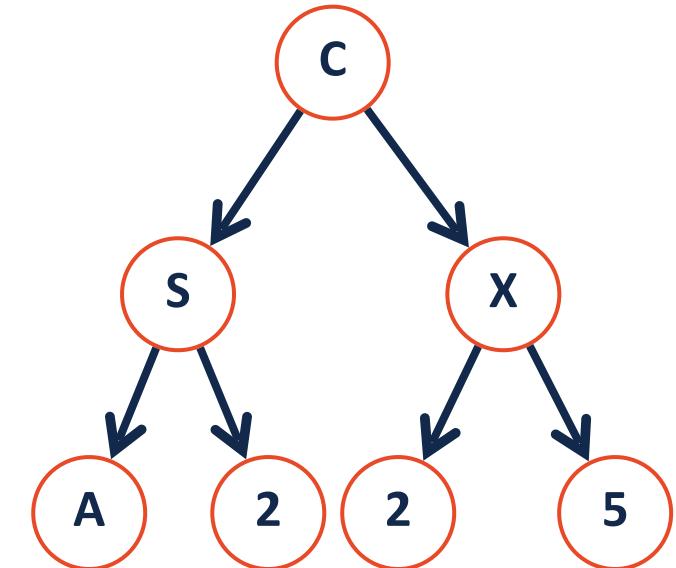
A **perfect tree** is a binary tree where...

Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

1.

2.



Binary Tree: perfect

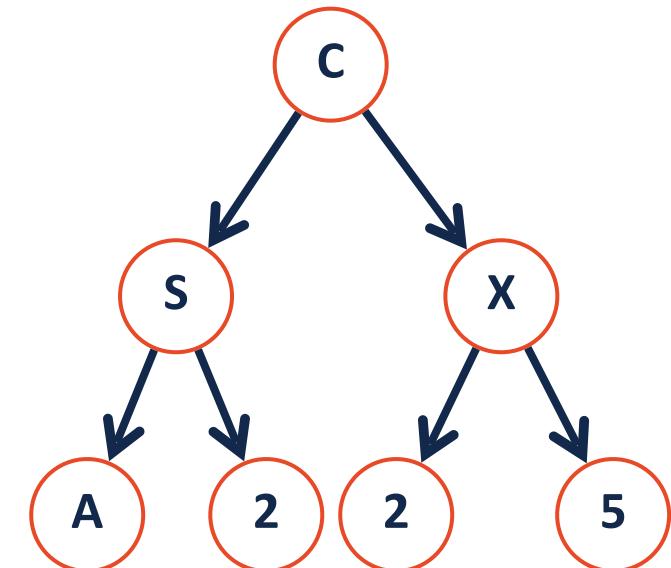
A **perfect tree** is a binary tree where...

Every internal node has 2 children and all leaves are at the same level.

A tree **P** is **perfect** if and only if:

$$1. P_h = (data, P_{h-1}, P_{h-1})$$

$$2. P_0 = (data, \emptyset, \emptyset) \equiv P_{-1} = \emptyset$$



Binary Tree: complete

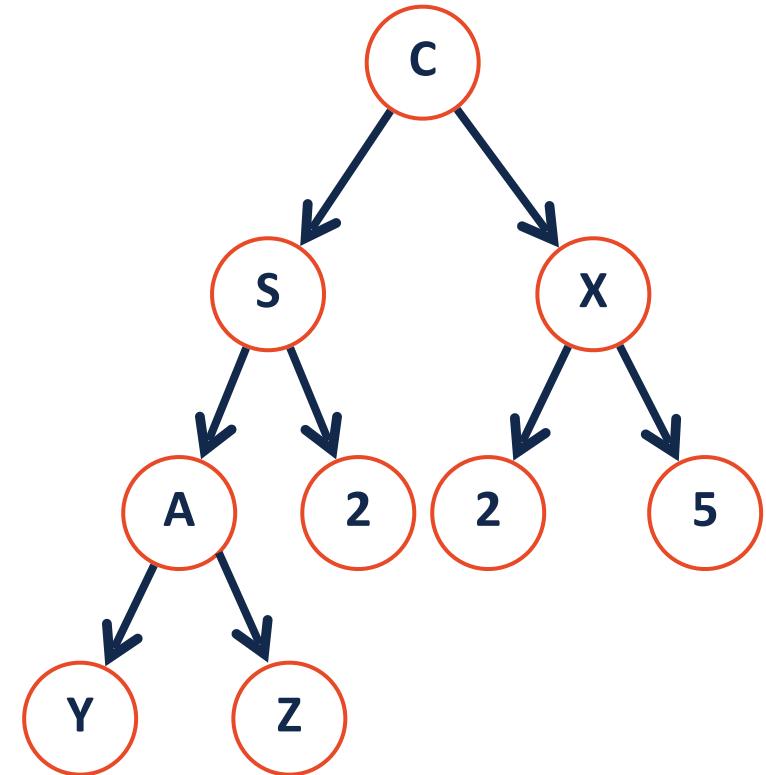
A **complete tree** is a B.T. where...

All levels except the last are completely filled.

The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

- 1.
- 2.
- 3.



Binary Tree: complete

A **complete tree** is a B.T. where...

All levels except the last are completely filled.

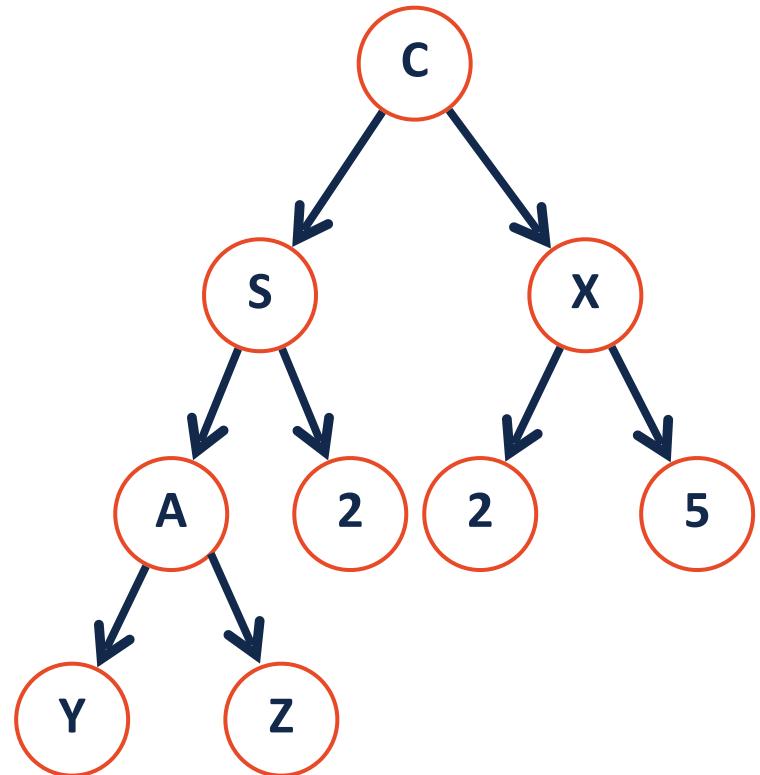
The last level contains at least one node (and is pushed to left)

A tree **C** is **complete** if and only if:

$$1. C_h = (data, C_{h-1}, P_{h-2})$$

$$2. C_h = (data, P_{h-1}, C_{h-1})$$

$$3. C_{-1} = \emptyset$$



Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure
2. Understanding how to think 'recursively' is very important.

Binary Tree: Thinking with Types

Is every **full** tree **complete**?

Is every **complete** tree **full**?

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree, then there are _____ NULL pointers.

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree, then there are $n+1$ NULL pointers.

Base Case:

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree, then there are $n+1$ NULL pointers.

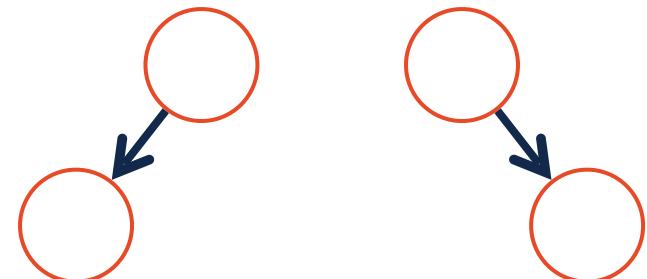
Base Case:

Let $F(n)$ be the max number of NULL pointers in a tree of n nodes

$N=0$ has one NULL

$N=1$ has two NULL

$N=2$ has three NULL



Theorem: If there are n objects in our representation of a binary tree, then there are $n+1$ NULL pointers.

Induction Step:

Theorem: If there are n objects in our representation of a binary tree, then there are $n+1$ NULL pointers.

IS: Assume claim is true for $|T| \leq k - 1$, prove true for $|T| = k$

By def, $T = r, T_L, T_R$. Let q be the # of nodes in T_L

Since r exists, $0 \leq q \leq k - 1$. By IH, T_L has $q + 1$ NULL

All nodes not in r or T_L exist in T_R . So T_R has $k - q - 1$ nodes

$k - q - 1$ is also smaller than k so by IH, T_R has $k - q$ NULL

Total number of NULL is the sum of T_L and T_R : $q + 1 + k - q = k + 1$

Tree ADT

Insert

Remove

Traverse

Find

Constructor

BinaryTree.h

```
1 #pragma once
2
3 template <class T>
4 class BinaryTree {
5     public:
6         /* ... */
7
8     private:
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 } ;
```

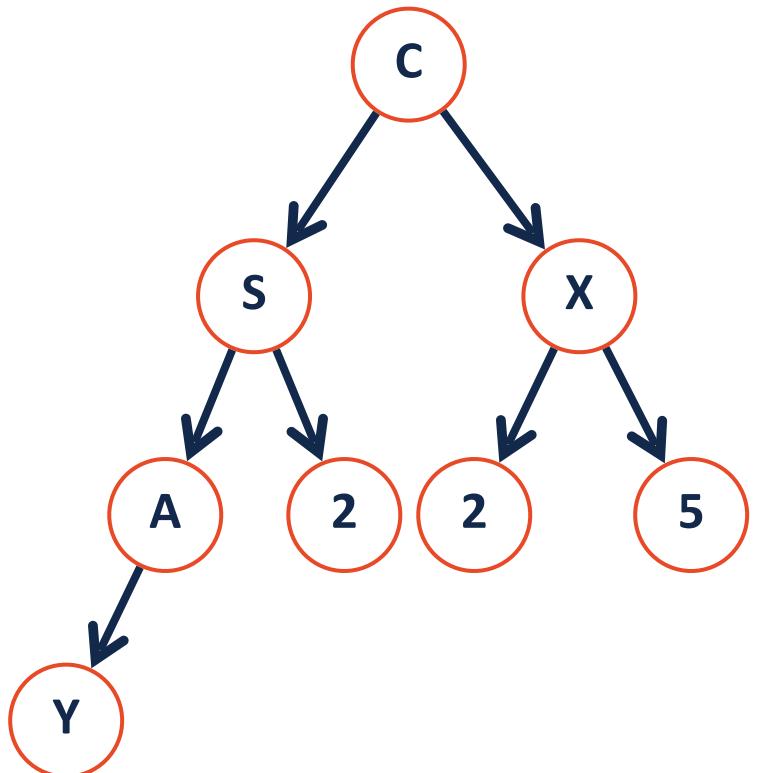
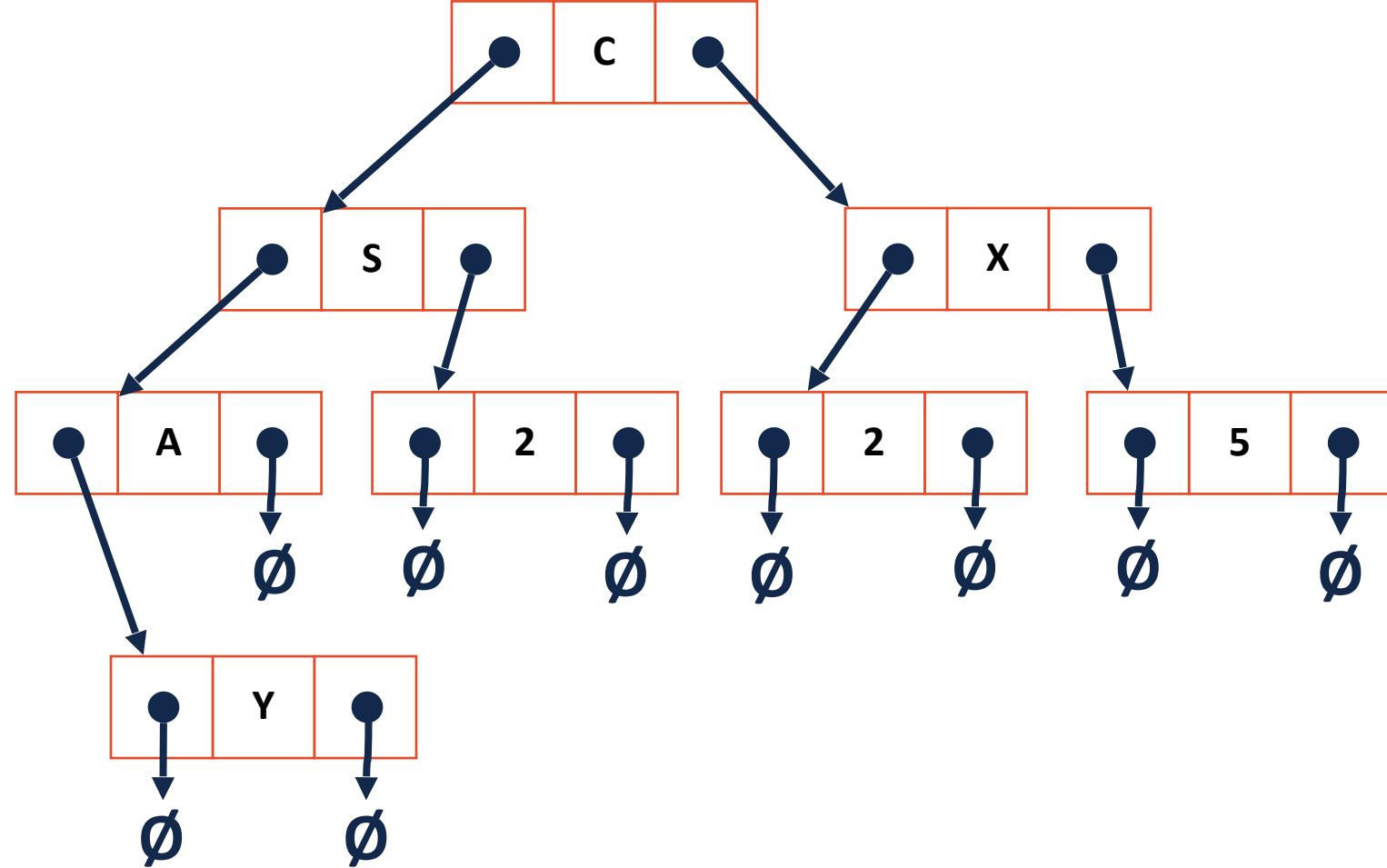
List.h

```
1 #pragma once
2
3 template <typename T>
4 class List {
5     public:
6         /* ... */
7     private:
8         class ListNode {
9             T & data;
10
11             ListNode * next;
12
13
14             ListNode(T & data) :
15                 data(data), next(NULL) { }
16         };
17
18
19
20             ListNode *head_;
21             /* ... */
22         };
23 }
```

Tree.h

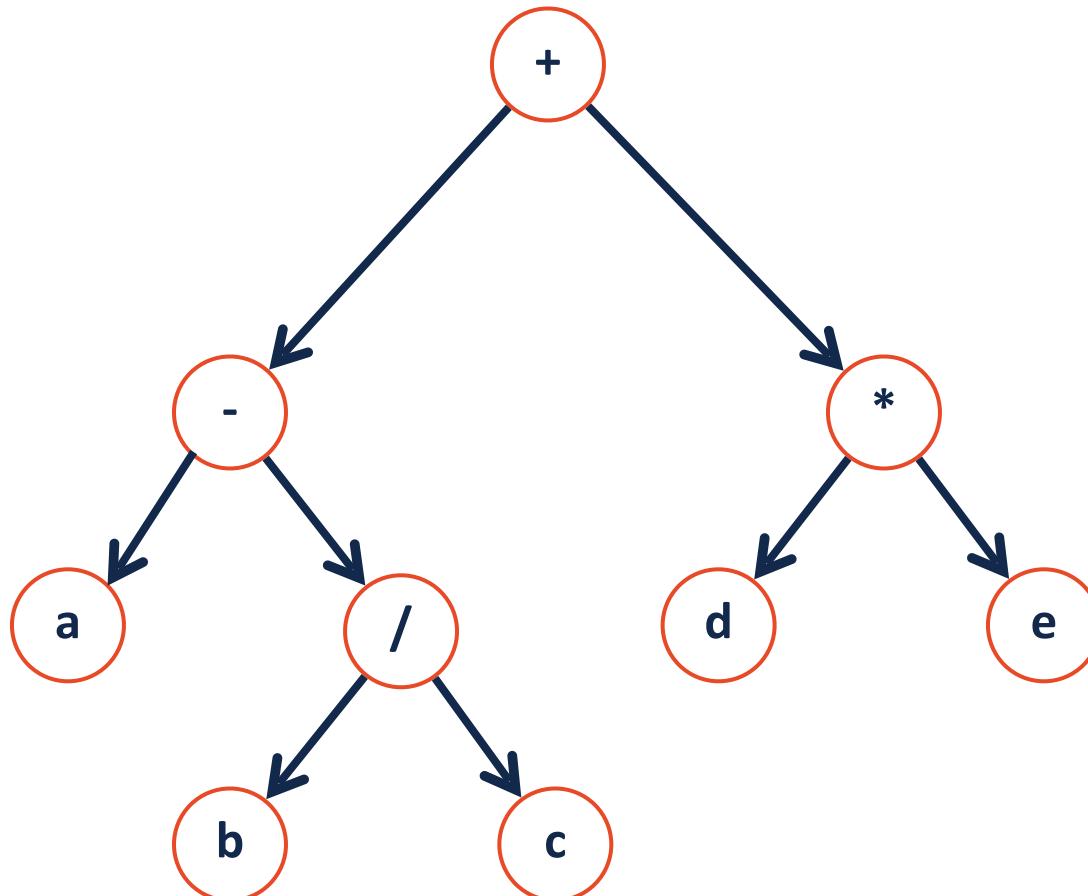
```
1 #pragma once
2
3 template <typename T>
4 class BinaryTree {
5     public:
6         /* ... */
7     private:
8         class TreeNode {
9             T & data;
10
11             TreeNode * left;
12
13             TreeNode * right;
14
15             TreeNode(T & data) :
16                 data(data), left(NULL),
17                 right(NULL) { }
18
19         };
20
21             TreeNode *root_;
22             /* ... */
23         };
24 }
```

Visualizing trees

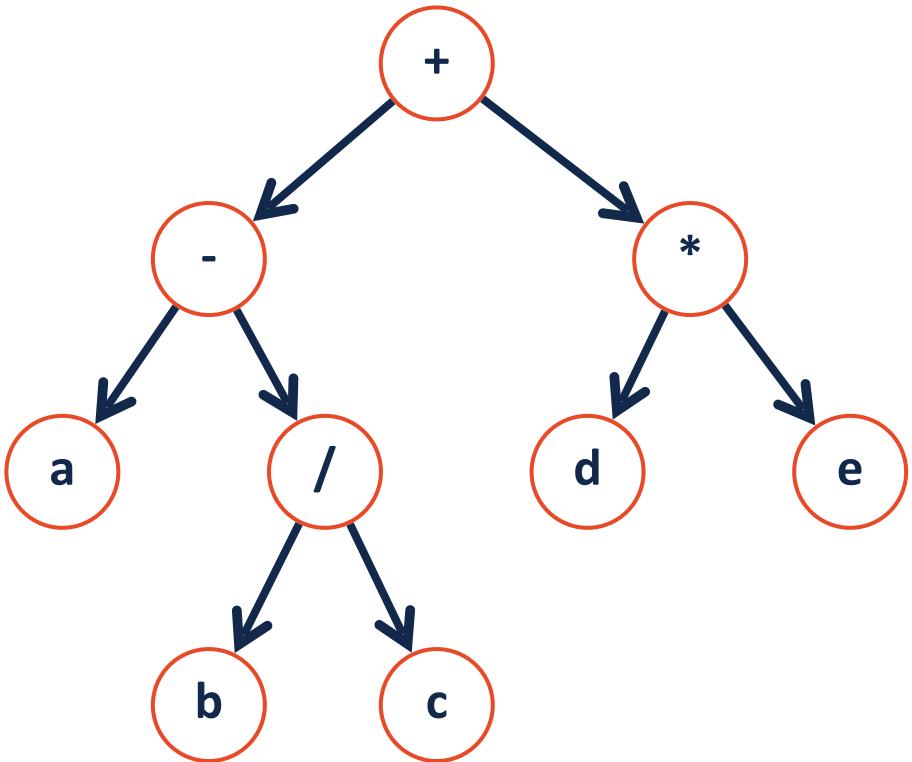


Tree Traversal

A **traversal** of a tree T is an ordered way of visiting every node once.



Traversals



```
1 template<class T>
2 void BinaryTree<T>::____Order(TreeNode * root)
3 {
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 }
```