Data Structures

Tree Definitions

CS 225 September 15, 2025
Brad Solomon & Harsha Tirumala

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

MP Lists out now!

MP submission on PL has two separate submissions
The extra credit portion will only test part 1

Completion of the extra credit portion by the following
Monday is worth 4 points

Exam 1 (9/17 — 9/19)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam is out on PL now

Topics covered can be found on website

Register now

https://courses.engr.illinois.edu/cs225/fa2025/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Review trees and binary trees

Practice tree theory with recursive definitions and proofs
Discuss the tree ADT

Explore tree implementation details

lterators

We want to be able to loop through all elements for any underlying
implementation in a systematic way

N T

> — ¢ ListNode * Curr->data Curr->next
8 | € 2 | & ANy curr
unsigned data[index] index++
index

Some form 27?7 27?7
of

Do
"o

(X, ¥y, 2)

.\.
"

lterators

For a class to implement an iterator, it needs two functions:

Iterator begin()

Returns an Iterator object pointing at the ‘first item’

Iterator end()

Returns an Iterator object pointing one entry past end of dataset

lterators

The actual iterator is defined as a class inside the outer class:

1.1t must be of base class std: :iterator

2. It must implement at least the following operations:
Iterator& operator ++()
const T & operator *()

bool operator !=(const Iterator &)

lterators

Here is a (truncated) example of an iterator:

1| template <class T>
2| class List {
3
4

class ListIterator : public
std: :iterator<std::bidirectional iterator tag, T> {

5 public:

6

7 ListIterator& operator++() ;
8

o] ListIterator& operator-- ()
10
11 bool operator!=(const ListIteratoré& rhs);
12
13 const T& operator*() ;
14 };
15
16 ListIterator begin() const;
17
18 ListIterator end() const;

19|}

stiList.cpp

WoOoOJoonUld WN =

#include <list>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back (b) ;

for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;
}

return O;

WoOoOJoonUld WN =

std: :vector<Animal> zoo;

/* Full text snippet */

for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) {
std: :cout << (*it) .name << " " << (*it) .food << std::endl;
}

/* Auto Snippet */

for (auto it = zoo.begin(); it !'= zoo.end; ++it) ({
std: :cout << (*it) .name << " " << (*it) .food << std::endl;
}

/* For Each Snippet */

for (const Animal & animal : zoo) {
std: :cout << animal.name << " " << animal.food << std::endl;

}

Trees

A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also: e @

1) Acyclic — No path from node to itself e @

2) Rooted — A specific node is labeled root

Binary Tree

A binary tree is a tree 1 such that:

1. 7T=0

2. T = (data, TL, TR)

Which of the following are binary trees? ?;f’

Sl

Join Code 225

@\>

s @\@ f\@ < o

A B C

Binary Tree Height

Height: The length of the longest path from root to leaf

What is the height of a tree with zero nodes?

Binary Tree Height

height(T) = 1 + max(height(Ty.), height (Tr))

Base Case: The height of the empty treeis -1

Recursive Step: Get height of left and right subtrees

Combining: Tree height is 1 plus the max of left or right height

Binary Tree

Lets define additional terminology for different types of binary trees!

1.

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children
A tree F is full if and only if: e

1.

2.
OO
3 OO

Binary Tree: full

A full tree is a binary tree where every node has either 0 or 2 children

(s) (0
2. F = (data, D, D) ° e

A tree F is full if and only if:
1.F=0

3.F = (data,F, # O, F, # O) e e

Bmary Tree: perfECt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1.

: N

OROONO

Bmary Tree: perfeCt A perfect tree is a binary tree where...
Every internal node has 2 children and all leaves are at the same level.

A tree P is perfect if and only if:

1Ph — (data, Ph—l’Ph—l)

N

2.Py = (data,,0)= P_, =0
OXOONO

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2 D@ ©
@R@

A tree Cis complete if and only if:

1.

Binary Tree: complete A complete tree is a BT. where...

All levels except the last are completely filled.
The last level contains at least one node (and is pushed to left)

N

2.C, = (data,P,_,C,_,) R @@ @
ONO,

A tree Cis complete if and only if:

1.C, = (data,Cy_, P;,_»)

3. C—l — @

Binary Tree

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’is very important.

Binary Tree: Thinking with Types

s every full tree complete?

Is every complete tree full?

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are NULL pointers.

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Binary Tree: Practicing Proofs

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Let F(n) be the max number of NULL pointers in a tree of n nodes

N=0 has one NULL

N=1 has two NULL Q

N=2 has three NULL Q‘

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Induction Step:

Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

IS: Assume claimis truefor |7 | < k — 1, prove truefor |T| = k
Bydef, I'=r,T;, Tp. Let g be the # of nodesin 1}

Since rexists,0 < g < k— 1.ByIH, T; has g + 1 NULL

All nodes notin ror T} existin Tp. So T has k — g — 1 nodes
k — g — 1 is also smaller than k so by IH, T has k — g NULL

Total number of NULListhesumof 7T, and Tp:g+ 1 +k—qg=k+ 1

Tree ADT

Insert
Remove
Traverse
Find

Constructor

BinaryTree.h

#pragma once

template <class T>
class BinaryTree ({
public:
/* ... */

private:

OWooJdJoUrbd WN R

List.h

Tree.h

wWodJdJoUrdWNKE

#pragma once

template <typename T>
class List {
public:
/* ... */
private:
class ListNode {
T & data;

ListNode * next;

ListNode (T & data) :
data(data) , next (NULL) { }

iy

ListNode *head ;
/* ... */
};

WodJdJoUrdWNE

#pragma once

template <typename T>
class BinaryTree ({
public:
/* ... */
private:
class TreeNode {
T & data;

TreeNode * left;
TreeNode * right;
TreeNode (T & data) :

data(data), left (NULL),
right (NULL) { }

};
TreeNode *root_;

/* ... */
iy

Visualizing trees

Sl b

S e

e | __

<

SRR

S e

S e

S e

Tree Traversal

A traversal of a tree T is an ordered way of visiting every node once.

ORNOERONNOC
OO

Traversals

template<class T>
void BinaryTree<T>:: Order (TreeNode * root)

{

OO OO}
12

(b) (o) I

OWooJdoUrdWNE

