Data Structures

Binary Search Trees

CS 225 September 19, 2025
Harsha Tirumala

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

@S SAIT2026

lllinois” Largest CS Outreach Event

APPLICATIONS OPEN NOW!
e LOCGISTICS «
MARKETING
e DESIGN

"« (SOFTWARE DEVELOPMENT)

DEADLINE SEPT 21, 11:59PM CT

Learning Objectives

Tree Traversals - Pre, In, Post orders
Explore implementations of DFS and BFS on binary trees
Extend binary trees into binary search trees

Build conceptual and coding understanding of BST

Traversals - Pre Order
1

template<class T>

void BinaryTree<T>:: Order (TreeNode * root)
Order (root->left) ;

{

GIRO :
11 ;

12
13 Order (root->right) ;

14
O © O :

°
14

2
3
4
5/ if (root) {
6
7
8
9

Traversals - In order

template<class T>
void BinaryTree<T>:: Order (TreeNode * root)

{

Order (root->left) ;

GIRO :
11 ;
12
13 Order (root->right) ;
14
O © O :

if (root) {

°
14

OWooJdoUrdWNE

Traversals - Post Order

template<class T>
void BinaryTree<T>:: Order (TreeNode * root)
{

° e if (root) {

@ Q Order (root->left) ;
e @ @ Order (root->right) ;

14

Tree Traversals

Pre-order:

In-order:

Post-order:

Tree Traversals (Solution) (1)
(2 (1,

ORSONR OO
ORRONOIO

Pre-order: 1235461187109
Tip: Preorder always starts with root!
In-order:3245618711910

Tip: Inorder always starts with leftmost node. Root is after all left nodes!

Post-order:346527891011 1
Tip: Post always starts with leftmost node. Root is always LAST node!

Traversal vs Search

@
ONOENO

TRAVERSAL

SEARCH

Objective -
Must visit every node

Obijective -
Needs to visit a specific
node

Runtime is always O(n)

Runtime is O(n) for
“unstructured” trees

(We will see better
runtimes later)

Types :

Pre-order
In-order
Post-order

Types :

Depth First Search
Breadth First Search

Tree Search

There are two main approaches to searching a binary tree:

Depth First Search

Explore as far along one path as possible before backtracking

Requirements :
. Look at the end of one path before
following another path

« Backtrack after each dead-end

|deas :

Function calls?
Data Structure?

Depth First Search

Explore as far along one path as possible before backtracking

Depth First Search

Explore as far along one path as possible before backtracking

template<class T>
void BinaryTree<T>::DFS explore (TreeNode*

root)

{
if (root) {
Print root data;

DFS_explore (root->left) ;

DFS explore (root->right) ;

Return;

}

Return;

}

Breadth First Search

Fully explore level i before exploring level i+1

Requirements :

e Start from root - then visit level 1

o After level 1, visit level 2.
Continue until you reach the bottom.

|deas :

Function calls?
Data Structure?

Breadth First Search

Fully explore level i before exploring level i+1

Breadth First Search

Fully explore level i before exploring level i+1

template<class T>
void BinaryTree<T>: :1lOrder (TreeNode * root)

{

Queue<TreeNode*> q;
g.enqueue (root) ;

while(g.empty () == False) {
TreeNode* temp = q.head();
process (temp); //can be print
qg.dequeue () ;

g.enqueue (temp->left) ;
g.enqueue (temp->right) ;

Level-Order Traversal

1| template<class T>
2|void BinaryTree<T>: :1lOrder (TreeNode * root)
3[{
4
5 Queue<TreeNode*> q;
‘ e 6 g.enqueue (root) ;
7
8 while(g.empty () == False) {
9
° 0 ° e 10 TreeNode* temp = q.head();
11 process (temp) ;
12
13 qg.dequeue () ;
© o :
15 qg.enqueue (temp->left) ;
16 g.enqueue (temp->right) ;
17
18 }

Tree Search Tradeoffs

How can we improve our ability to search a binary tree?

What do we trade in order to do so?

Improved search on a binary tree

513(6|7]|1|4 1(3

olRo
ojRolo o

Dictionary ADT

Data is often organized into key/value pairs:

Word = Definition
Course Number = Lecture/Lab Schedule
Node = Incident Edges

Flight Number = Arrival Information
URL-> HTML Page

Binary Search Tree (BST)

A BST is a binary tree T = TreeNode(key, T;, T,) such that:

BST.h

Tree.h

wWodJdJoUrdWNKE

#pragma once

template <typename K, typename V>
class BST {
public:
/* ... */
private:
class TreeNode {
K & key;
V & value;
TreeNode *left, *right;
TreeNode (K & k, V & v)
key (k) , value(v),
left (NULL) , right(NULL) { }
};

TreeNode *root ;
/* ... */
};

WodJdJoUrdWNE

#pragma once

template <typename T>
class BinaryTree ({
public:
/* ... */
private:
class TreeNode {
T & data;

TreeNode * left;
TreeNode * right;
TreeNode (T & data)

data(data), left (NULL),
right (NULL) { }

};

TreeNode *root_;
/* ... */
};

Binary Search Tree ADT

Insert
Remove
Traverse
Find

Constructor

BST Find find (66)

BST Find find (66)

A recursive function based around value of root:
Base Case: If rootis null, return root
Lettmp = root->key()

tmp == query, return root
Recursion:

tmp < query, recurse right
tmp > query, recurse left
Combining:

Return the recursive value back up the tree e

BST Find find (9)
Make sure you can follow the search path!

® @

OooodJouldkd WDNBE

template<typename K, typename V>

_find(TreeNode *& root, const K & key) {

1| template<typename K, typename V>
2
3 TreeNode *& _find(TreeNode *& root, const K & key) {
4
5
6|// Base Case
7|1f (root == nullptr || root->data == key) {
8 return root;
9(}
10
11|// Recursive Step (“Combining step” is ‘return’)
12|if (root->data > key) {
13 return find(root->left, key);
14|}
15
16| return find(root->right, key);
17
18
19/} a
20
21
22
z ()

BST Insert insert (33, v)

BST Insert insert (15, v)

Find the insert location using _find()

Trivially insert at location @

® @

1| template<typename K, typename V>

2

3|void insert(const K & key, const V & val) {

4

5 return insert(root, key, val);

6|}

7

1| template<typename K, typename V>

2

3|void insert(TreeNode *& root, const K & key, const V & val) {

4

5

6

7

8

9

¥ O
11

: OO
13

14

15

16)) OO0

template<typename K, typename V> @

void insert(const K & key, const V & val) {

return insert(root, key, val);

ook WM K

template<typename K, typename V>
void insert(TreeNode *& root, const K & key, const V & val) {

TreeNode *& tmp = find(root, key);

tmp = new treeNode (key, val);

12

13|}

15

X OO O

OooodJonuld WPNBE

BST Insert

What binary tree would be formed by inserting the following
sequence of integers: [3, 7, 2, 1, 4, 8, O]

BST Remove

What should our tree look like after the following...

remove (40) @

5 o
remove (25) @ @ @ @

remove (51) @

