
Department of Computer Science

Data Structures
Graph Traversals

October 29, 2025 CS 225
Brad Solomon

Announcements

EC points have been awarded for all IEF and surveys

FAIR cases are in the works — remember course policies!

MP_traversal survey will go out today

Learning Objectives

Discuss graph traversal algorithms

v

u

w z

Vertex Storage:

Edge Storage:

|V|= n,|E|= mGraph Implementation: Edge List
The equivalent of an ‘unordered’ data structure

u

v

w

z

u v a

v w b

u w c

w z d

a c

b d An optional list of vertices

A list storing edges as (V1, V2, Weight)

Most graphs are stored as just an edge list!

Graph Implementation: Adjacency Matrix

v

u

w

a c

b
z

d

|V|= n,|E|= m

0 1 2 3

0 - a c 0

1 - b 0

2 - d

3 -

u 0

v 1

w 2

z 3

Vertex Storage:

Edge Storage:

A hash table of vertices

Implicitly or explicitly store index

A |V| x |V| matrix of edges

Weight is stored at position (u, v)

Adjacency List Vertex Storage:

Edge Storage:

v

u

w

a c

b
z

d

u

v

w

z

u v a

v w b

u w c

w z d

*a *c

*a *b

*b *c *d

*d

d=2

d=2

d=3

d=1

A bidirectional linked list with size variable
Each node is a pointer to edge in edge list

A list of (v1, v2, weight) edges
Also store pointers back to nodes

Expressed as O(f)
Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1* n* 1*

removeVertex(v) n+m n deg(v)

insertEdge(u, v) 1 1 1*

removeEdge(u, v) m 1
min(deg(u),

deg(v))

incidentEdges(v) m n deg(v)

areAdjacent(u, v) m 1
min(deg(u),

deg(v))

|V|= n,|E|= m

Graph Traversals
Objective: Visit every vertex and every edge in the graph.

How can we systematically go through a complex graph in the fewest steps?

• Rooted
• Acyclic
•

•
•
•

Tree traversals won’t work — lets compare:

Traversal: BFS
A

C D

E

B

G H

F

To complete a traversal what do we need?

As input:

To keep track of:

Traversal: BFS v d P Adjacent Edges

A B C D

B A C E

C A B D E F

D A C F H

E B C G

F C D G

G E F H

H D G

A

C D

E

B

G H

F

Traversal: BFS
v d P Adjacent Edges

A 0 - B C D

B 1 A A C E

C 1 A A B D E F

D 1 A A C F H

E 2 B B C G

F 2 C C D G

G 3 E E F H

H 2 D D G

A B C D E F H G

Initialize queue / depth / predecessor

While queue not empty:

Remove front vertex of queue

Check if edge connects to new vertex

Add unvisited edges to queue

Set dist / pred if new vertex A

C D

E

B

G H

F

|V|= n,|E|= m

Running time?

Traversal: BFS

A

C D

E

B

G H

F

A

C D

E

B

G H

F

v d P Adjacent Edges

A 0 - C B D

B 1 A A C E

C 1 A A B D E F

v d P Adjacent Edges

A 0 - B C D

B 1 A A C E

C 1 A A B D E F

Traversal depends on start position as well as order of edges at each node

Input: Graph, G
Output: A labeling of the edges in G as discovery or cross

BFS(G):
 foreach (Vertex v : G.vertices()):

setPred(v, NULL)
setDist(v, -1)

 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):
 if getDist(v) == -1:
 BFS(G, v)

1
2
3
4
5
6
7
8
9

10
11

BFS(G):
 foreach (Vertex v : G.vertices()):

setPred(v, NULL)
setDist(v, -1)

 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):
 if getDist(v) == -1:
 BFS(G, v)

1
2
3
4
5
6
7
8
9

10
11

BFS(G, v):
 Queue q
 setDist(v, 0)
 q.enqueue(v)

 while !q.empty():
 v = q.dequeue()

foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1):

 setLabel((v, w), DISCOVERY)
 setPred(w, v)
 setDist(w, v + 1)
 q.enqueue(w)
 else:
 setLabel((v, w), CROSS)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

BFS(G):
 foreach (Vertex v : G.vertices()):

setPred(v, NULL)
setDist(v, -1)

 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):
 if getDist(v) == -1:
 BFS(G, v)

1
2
3
4
5
6
7
8
9

10
11

BFS(G, v):
 Queue q
 setDist(v, 0)
 q.enqueue(v)

 while !q.empty():
 v = q.dequeue()

foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1):

 setLabel((v, w), DISCOVERY)
 setPred(w, v)
 setDist(w, v + 1)
 q.enqueue(w)
 else:
 setLabel((v, w), CROSS)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Count connected components?

Cycle Detection?

BFS Observations v d P Adjacent Edges

A 0 - C B D

B 1 A A C E

C 1 A B A D E F

D 1 A A C F H

E 2 C B C G

F 2 C C D G

G 3 E E F H

H 2 D D G

What is the shortest path from A to H?

What is the shortest path from E to H?

If my node has distance d, do I know anything
about the nodes connected by a cross edge?

What structure is made from discovery edges?

A

C D

E

B

G H

F

BFS Observations
1. BFS can be used to count components
2. BFS can be used to detect cycles

3. The BFS ‘distance’ value is always the shortest distance from
source to any vertex (and the discovery edges form a MST)

4. The endpoints of a cross edge never differ in
distance by more than 1 (|d(u) - d(v)| = 1)

Traversal: DFS

A

C

D

E

B
F

G

H

J
I

DFS(G):
 foreach (Vertex v : G.vertices()):

setPred(v, NULL)
setDist(v, -1)

 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):
 if getDist(v) == -1:
 DFS(G, v)

1
2
3
4
5
6
7
8
9

10
11

DFS(G, v):

foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1):

 setLabel((v, w), DISCOVERY)
 setPred(w, v)
 setDist(w, v + 1)
 DFS(G, w)
 else:
 setLabel((v, w), BACK)

12
13
14
15
16
17
18
19
20
21

A

C D

E

B

G H

F

DFS(G, v):

foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1):

 setLabel((v, w), DISCOVERY)
 setPred(w, v)
 setDist(w, v + 1)
 DFS(G, w)
 else:
 setLabel((v, w), BACK)

12
13
14
15
16
17
18
19
20
21

A

C D

E

B

F

G H

v d P Adjacent Edges

A 0 - B C D

B 1 A A C E

C 2 B A B D E F

D 3 C A C F H

E 6 G B C G

F 4 D C D G

G 5 F E F H

H 4 D D G

A B C D F G E H

Running time? |V|= n,|E|= m

Traversal: DFS

Discovery Edge

Back Edge

A

C

D

E

B
F

G

H

J
I

Does distance have meaning here?

Do our edge labels have meaning here?

Do we still make a spanning tree?

Efficiency: DFS vs BFS
BFS:

A

C D

E

B

G H

F

A B C D E F H G

DFS:

A B C D F G E H

A

C D

E

B

F

G H

|V|= n,|E|= m

Space Efficiency: DFS vs BFS

4

12

-1

5

-2
6

7
13

8

-4

-5

-63

2

1

Summary: DFS and BFS
Both are O(n+m) traversals! They label every edge and every node

|V|= n,|E|= m

BFS DFS

Solves unweighted MST

Solves shortest path

Solves cycle detection

Memory bounded by width

Solves unweighted MST

Solves cycle detection

Memory bounded by longest path

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Minimum Spanning Tree Algorithms
Input: Connected, undirected graph G with edge
weights (unconstrained, but must be additive)

Output: A graph G’ with the following properties:

•G’ is a spanning graph of G

•G’ is a tree (connected, acyclic)

•G’ has a minimal total weight among all spanning
trees A

C D

E

B

F

8 42
7 1

2 3 9 5

