Data Structures

Graph Traversals

CS 225 October 29, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Announcements
EC points have been awarded for all IEF and surveys

MP_traversal survey will go out today

FAIR cases are in the works — remember course policies!

Learning Objectives

Discuss graph traversal algorithms

Graph Implementation: Edge List 1VI= n, |[E|= m

The equivalent of an ‘unordered’ data structure

Q. Vertex Storage:
70X
© b @ d © An optional list of vertices
v Tuls Edge Storage:
N Ta1. A list storing edges as (V1, V2, Weight)
z w z d

Most graphs are stored as just an edge list!

Graph Implementation: Adjacency Matrix
|IV|=n, |E|= m

Vertex Storage:
/GDY A hash table of vertices
b d - - :
O W) © Implicitly or explicitly store index

ulo -n-nn Edge Storage:

o A|V]x|V| matrix of edges

b 0 Weightisstored at position (u, v)
d

Adjacency List Vertex Storage:

A bidirectional linked list with size variable

(W
7 b& ; Each node is a pointer to edge in edge list
© @—Q

Edge Storage:

|IV|=n, |E|=m

Edge List Adjacency Matrix Adjacency List
Expressed as O(f)
n+m n2 n+m

Space

insertVertex(v) 1* n* 1*
removeVertex(v) n+m n deg(v)
insertEdge(u, v) 1 1 1*

in(d ’
removeEdge(u, v) m 1 min(deg(u)

deg(v))
incidentEdges(v) m n deg(v)
areAdjacent(u, v) m 1 min(deg(u),

deg(v))

Graph Traversals

Objective: Visit every vertex and every edge in the graph.

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:

R
© R
OO
e Rooted .
e Acyclic .

Traversal: BFS

To complete a traversal what do we need?

As input:

To keep track of:

Traversal: BFS o P | e

v

A BCD
B ACE
C ABDEF
D

E

F

G

H

ACFH

BCG

CDG
EFH
DG

Traversal: BFS IVI= n, |E|=m @

Initialize queue / depth / predecessor nn“
While queue not empty: A BCD
B1 A ACE
Remove front vertex of queue
C1 A ABDEF
Check if edge connects to new vertex N P R P
Set dist / pred if new vertex E2 B BCG
Add unvisited edges to queue N
G3 E EFH
H 2 D DG

Running time?

Traversal: BFS

Traversal depends on start position as well as order of edges at each node

nn“ Adjacent Edges

BCD
B 1 A ACE

C1 A ABDEF

nn“ Adjacent Edges

CBbD
B1 A ACE

C 1 A ABDEF

Input: Graph, G
Output: A labeling of the edges in G as discovery or cross

1|BFS (G) :

2 foreach (Vertex v : G.vertices()):
3 setPred (v, NULL)

4 setDist (v, -1)

5

6 foreach (Edge e : G.edges()):

7 setLabel (e, UNEXPLORED)

8

] foreach (Vertex v : G.vertices()):
10 if getDist(v) == -1:
11 BFS (G, V)

1|BFS (G) :
2 foreach (Vertex v : G.vertices()):
3 setPred (v, NULL)
4 setDist (v, -1)
5
6 foreach (Edge e : G.edges()):
7 setLabel (e, UNEXPLORED)
8
9 foreach (Vertex v : G.vertices()):
10 if getDist(v) == -1: 12|BFS (G, v):
11 BFS (G, V) 13| Queue q
14 setDist (v, O0)
15 q.enqueue (V)
16
17 while !g.empty () :
18 v = q.dequeue ()
19
20 foreach (Vertex w : G.adjacent(v)):
21 if(getDist(w) == -1):
22 setLabel ((v, w), DISCOVERY)
23 setPred (w, v)
24 setDist(w, v + 1)
25 g .enqueue (w)
26 else:
27 setLabel ((v, w), CROSS)

1|BFS (G) :

2| foreach (Vertex v : G.vertices()): Count connected components?
3 setPred (v, NULL)

4 setDist (v, -1)

5

6 foreach (Edge e : G.edges()):

7 setLabel (e, UNEXPLORED)

8

9 foreach (Vertex v : G.vertices()):
10 if getDist(v) == -1: BFS (G .
11 BFS (G, V) 12 (G, v):

13 Queue q
14 setDist (v, O0)

Cycle Detection? |15| 9-enqueue(v)

16

17 while !g.empty() :

18 v = g.dequeue ()

19

20 foreach (Vertex w : G.adjacent(v)):

21 if (getDist(w) == -1):

22 setLabel ((v, w), DISCOVERY)

23 setPred(w, v)

24 setDist (w, v + 1) [m]Hri[m]

25 g.enqueue (W) ?F
26 else: EEI
27 setLabel ((v, w), CROSS) E

E Adjacent Edges

- CBD
ACE

BFS Observations

What is the shortest path from A to H?
BADEF

ACFH
BCG
What is the shortest path from E to H? CDG

EFH

T o m™moo w >E
NUJNNI—\I—\I—\OE

o m o o > >» >

DG

If my node has distance d, do | know anything
about the nodes connected by a cross edge?

What structure is made from discovery edges?

BFS Observations

1. BFS can be used to count components
2. BFS can be used to detect cycles

3. The BFS‘distance’ value is always the shortest distance from
source to any vertex (and the discovery edges form a MST)

4. The endpoints of a cross edge never differ in
distance by more than 1 (|d(u) -d(v)|=1)

Traversal: DFS

1|DFS (G) :
2 foreach (Vertex v : G.vertices()):
3 setPred (v, NULL)
4 setDist (v, -1)
5
6 foreach (Edge e : G.edges()):
7 setLabel (e, UNEXPLORED)
8
9 foreach (Vertex v : G.vertices()):
10 if getDist(v) == -1: DFS (G .
11 DFS (G, V) i_?,, (€, v
14 foreach (Vertex w : G.adjacent(v)):
15 if(getDist(w) == -1):
16 setLabel ((v, w), DISCOVERY)
17 setPred (w, v)
18 setDist(w, v + 1)
19 DFS (G, w)
20 else:
21 setLabel ((v, w), BACK)

DFS (G, V): nn“ Adjacent Edges

A O BCD
foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1): B 1 A ACE
setLabel ((v, w), DISCOVERY)
setPred(w, V) C 2 B ABDEF
setDist(w, v + 1)
DFS (G, w) D 3 C ACFH
else: E6 G BCG
setlLabel ((v, w), BACK)
F 4 D CDG
G 5 F EFH
H 4 D DG

ABCDPFGEH

Running time? |V|= n, |E|=

Traversal: DFS

Discovery Edge

______________ Back Edge

tl‘
Do we still make a spanning tree? - ﬁﬁ
Does distance have meaning here?

Do our edge labels have meaning here?

Efficiency: DFS vs BFS IVI= n,JE|= m
BFS:

A BCDETFHG

ABCDVFGEH

Space Efficiency: DFS vs BFS
(2 —s(w)
)
@
ONNOWN O
O O

Summary: DFS and BFS |IVI= n, |E|= m@
Both are O(n+m) traversals! They label every edge and every node

BFS DFS

Solves unweighted MST Solves unweighted MST
Solves shortest path
Solves cycle detection Solves cycle detection

Memory bounded by width Memory bounded by longest path

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Minimum Spanning Tree Algorithms

Input: Connected, undirected graph G with edge
weights (unconstrained, but must be additive)

Output: A graph G’ with the following properties:
« G’ is a spanning graph of G
« G’ is a tree (connected, acyclic)

« G’ has a minimal total weight among all spanning
trees

