Data Structures

Minimum Spanning Tree

CS 225 October 31, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review graph traversal algorithms
Introduce the minimum spanning tree (with weights)
Introduce Kruskal’s / Prim’s MST Algorithms

Begin discussing implementation of Kruskal’s

Graph Traversals

Objective: Visit every vertex and every edge in the graph.

How can we systematically go through a complex graph in the fewest steps?

Tree traversals won't work — lets compare:

R
O R
y
©0
e Rooted e No root (any start position valid)

« Acyclic e Cycles
e A clear ‘endpoint’ « No obvious ‘endpoint’

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

BFS (G, Vv):
Queue q
setDist (v, 0)
g.enqueue (V)

while !'q.empty() :
= g.dequeue ()

foreach (Vertex w :

if(getDist(w) == -1):
setlLabel ((v, w), DISCOVERY)
setPred(w, V)
setDist(w, v + 1)
q.enqueue (w)

else:
setLabel ((v, w), CROSS)

G.adjacent (v)):

nn“ Adjacent Edges

A BCD

B 1 A ACE

C 1 A ABDEF
D 1 A ACFH

E 2 B BCG

F 2 C CDG

G 3 E EFH

H 2 D DG

INUNRRNNY

BFS Observations

1. BFS can be used to count components
2. BFS can be used to detect cycles

3. The BFS‘distance’ value is always the shortest distance from
source to any vertex (and the discovery edges form a MST)

4. The endpoints of a cross edge never differ in
distance by more than 1 (|d(u) -d(v)|=1)

Traversal: DES Initialize dist / pred / stack
All dist null (start node dist 0)

All pred -1 (start node pred -1)
Stack loaded with start node
While stack not empty

tmp=stack.peek()
Process one child of tmp
Add to stack
dist =tmp.dist+1
pred =tmp
If no unvisited children A
stack.pop() Stack

1|DFS (G) :
2 foreach (Vertex v : G.vertices()):
3 setPred (v, NULL)
4 setDist (v, -1)
5
6 foreach (Edge e : G.edges()):
7 setLabel (e, UNEXPLORED)
8
9 foreach (Vertex v : G.vertices()):
10 if getDist(v) == -1: DFS (G .
11 DFS (G, V) i_?,, (€, v
14 foreach (Vertex w : G.adjacent(v)):
15 if(getDist(w) == -1):
16 setLabel ((v, w), DISCOVERY)
17 setPred (w, v)
18 setDist(w, v + 1)
19 DFS (G, w)
20 else:
21 setLabel ((v, w), BACK)

DFS (G, V): nn“ Adjacent Edges

A O - BCD
foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1): B 1 A ACE
setLabel ((v, w), DISCOVERY)
setPred(w, V) C 2 B ABDEF
setDist(w, v + 1)
DFS (G, w) D 3 C ACFH
EEE E6 G BCG
setlLabel ((v, w), BACK)
F 4 D CDG
G 5 F EFH
ﬁ H 4 D DG
@ G, State of stack when H is added:

Ol A0
Traversal: DFS Do we still make a spanning tree? E@ﬁﬁ

Does distance have meaning here?

Discovery Edge .
Do our edge labels have meaning here?

______________ Back Edge

Running time of DFS

Labeling:
e Vertex:

« Edge:

Traversal:
e \Vertex:

« Edge:

Efficiency: DFS vs BFS
BFS:

A BCDETFHG

ABCDVFGEH

Space Efficiency: DFS vs BFS
(2 —s(w)
)
@
ONNOWN O
O O

Summary: DFS and BFS |IVI= n, |E|= m@
Both are O(n+m) traversals! They label every edge and every node

BFS DFS

Solves unweighted MST Solves unweighted MST
Solves shortest path
Solves cycle detection Solves cycle detection

Memory bounded by width Memory bounded by longest path

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Minimum Spanning Tree Algorithms

Input: Connected, undirected graph G with edge weights
(unconstrained, but must be additive)

Output: A graph G’ with the following properties:

« G’ is a spanning graph of G

« G’ is a tree (connected, acyclic)

« G’ has a minimal total weight among all spanning trees

8 ® 4

2 3 oo
(E) (E)

Kruskal’s Algo rithm (A graph algorithm for the MST problem)

What information do | need to get efficiently?

1) The global minimum edge weight

2) Edge connections given a vertex

3) If two vertices are already connected

4) A visited list of vertices

Kruskal’s Algo rithm (A graph algorithm for the MST problem)

What information do | need to get efficiently?

1) The global minimum edge weight

3) If two vertices are already connected

What does this tell me about my implementation choices?

Kruskal’s Algo rithm (A graph algorithm for the MST problem)

What information do | need to get efficiently?

1) The global minimum edge weight

3) If two vertices are already connected

What does this tell me about my implementation choices?
1) We need a priority queue of edges (sorted by weight)

2) We need a disjoint set of vertices

Kruskal’s Algorithm 1) Build a priority queue on edges

(A, D)
(E, H)
(F, G)
(A, B)
(8, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C) |
(D, E) @
(B, C)

(C, D) |
(A, F) é
(D, F)

2) Build a disjoint set on vertices

Kruskal’s Algorithm 1) Build a priority queue on edges

(A, D) A minheap

(E, H) or

(F, G) A sorted array
:g E; 2) Build a disjoint set on vertices
(G, E) All vertices start as their own set
(G, H)

(E, C) 3) Loop through min edges

((E ':)) If edge connects two disjoint sets
(F, C) | | | | Union sets and record edge in MST
(D,)

(B, C) 59 é) é) 4) Stop when:

<o) . A . A

™ é é) 8@ @5 N-1 edges recorded

(D, F) Only a single disjoint set remains

Kruskal’s Algorithm

1 | KruskalMST (G) :
2 DisjointSets forest
3 foreach (Vertex v : G.vertices()):
4 forest.makeSet (v)
5
6 PriorityQueue Q // min edge weight
7 Q.buildFromGraph (G.edges ())
8
9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
14 T .addEdge (u, v)
15 forest.union(forest.find(u),
, , , , 16 forest.find(v))
v 000 |
e 18 return T
N N N N 19

|IV|=n, |E|]=m

Kruskal’'s Algorithm
What is the Big O?

1 | KruskalMST (G) :

2 DisjointSets forest

3 foreach (Vertex v : G.vertices()):

4 forest.makeSet (v)

5

6 PriorityQueue Q // min edge weight
7 Q.buildFromGraph (G.edges ())

8

9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
14 T .addEdge (u, v)
15 forest.union(forest.find(u),
16 forest.find(v))
17
18 return T
19

Kruskal’'s Algorithm

OWooOJdJonUl e WN =

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v :

forest.makeSet (v)

G.vertices()):
PriorityQueue Q // min edge weight
Q.buildFromGraph (G.edges ())

Graph T = (V, {})

while |T.edges ()| < n-1:
Vertex (u, v) = Q.removeMin ()

if forest.find(u) !'= forest.find(v):

T .addEdge (u, v)
forest.union(forest.find(u),
forest.find(v))

return T

|IV|=n, |E|]=m

What is the Big O?
2—4:0(n)
Heap: O(m)

Sorted List: O(m log m)

1T:mx<12-17>
Heap: O(log m)

12—=17: Sorted List: O(1)

Disjoint set we treat as O(1) b/c path compression w/ smart union

Kruskal’s Algorithm

2 DisjointSets forest
Sorted Array 3 foreach (Vertex v : G.vertices()):
Building 4 forest.makeSet (v)
. 5
7 6 PriorityQueue Q // min edge weight
Each removeMin 7 Q.buildFromGraph (G.edges ())
112 8
9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
14 T .addEdge (u, v)
15 forest.union(forest.find(u),
16 forest.find(v))
17
18 return T
19

Kruskal’s Algorithm

Priority Queue:
Sorted Array

Buﬂdlng

O(m) O(m log m)

Each removeMin

12 O(m log m)

O(m)

Both resultinm + mlogm
Why is heap good?
If edge weights can change!

Why is sorted array good?

OWooOJoUldWN =

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v :

forest.makeSet (v)

G.vertices()):

PriorityQueue Q // min edge weight
Q.buildFromGraph (G.edges ())

Graph T = (V, {})

while |T.edges ()| < n-1:
Vertex (u, v) = Q.removeMin ()
if forest.find(u) '= forest.find(v):

T .addEdge (u, v)
forest.union(forest.find(u),
forest.find(v))

return T

Sorted array not destroyed and can be useful in other algorithms!

Kruskal’s Algorithm

. . 2 DisjointSets forest
Total Running Time 3 foreach (Vertex v : G.vertices()):
Heap 4 forest.makeSet (v)
5
6 PriorityQueue Q // min edge weight
Sorted Array 7 Q.buildFromGraph (G.edges ())
8
9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
14 T .addEdge (u, v)
15 forest.union(forest.find(u),
16 forest.find(v))
17
18 return T
19

Kruskal’'s Algorithm

. . 2 DisjointSets forest
Total Running Time 3 foreach (Vertex v : G.vertices()):
Heap O(n)+O(m) + O(m log m) 4 forest.makeSet (v)
5
6 PriorityQueue Q // min edge weight
Sorted Array O(n) + O(m log m) + O(m) 7 Q.buildFromGraph (G.edges ())
8
9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
1 . —_ 14 T .addEdge (u, v)
Neat trICk O(Iog m) — O(Iog n) 15 forest.union(forest.find(u),
. . 16 forest.find(v))
Bounds of n & m relationship? | 17
18 return T
9 19
n—1<m<n

Connected graph ~ Complete graph

