
Department of Computer Science

Data Structures
Minimum Spanning Tree

October 31, 2025 CS 225
Brad Solomon

Learning Objectives

Review graph traversal algorithms

Introduce the minimum spanning tree (with weights)

Introduce Kruskal’s / Prim’s MST Algorithms

Begin discussing implementation of Kruskal’s

Graph Traversals
Objective: Visit every vertex and every edge in the graph.

How can we systematically go through a complex graph in the fewest steps?

• Rooted
• Acyclic
• A clear ‘endpoint’

• No root (any start position valid)
• Cycles
• No obvious ‘endpoint’

Tree traversals won’t work — lets compare:

BFS(G, v):
 Queue q
 setDist(v, 0)
 q.enqueue(v)

 while !q.empty():
 v = q.dequeue()

foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1):

 setLabel((v, w), DISCOVERY)
 setPred(w, v)
 setDist(w, v + 1)
 q.enqueue(w)
 else:
 setLabel((v, w), CROSS)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

v d P Adjacent Edges

A 0 - B C D

B 1 A A C E

C 1 A A B D E F

D 1 A A C F H

E 2 B B C G

F 2 C C D G

G 3 E E F H

H 2 D D G

A

C D

E

B

G H

F

A B C D E F H G

BFS Observations
1. BFS can be used to count components
2. BFS can be used to detect cycles

3. The BFS ‘distance’ value is always the shortest distance from
source to any vertex (and the discovery edges form a MST)

4. The endpoints of a cross edge never differ in
distance by more than 1 (|d(u) - d(v)| = 1)

Traversal: DFS
A

C

D

E

B
F

G

H

J
I

Initialize dist / pred / stack

While stack not empty

All dist null (start node dist 0)
All pred -1 (start node pred -1)
Stack loaded with start node

tmp=stack.peek()
Process one child of tmp

Add to stack
dist = tmp.dist+1

pred = tmp

Stack
AIf no unvisited children

stack.pop()

DFS(G):
 foreach (Vertex v : G.vertices()):

setPred(v, NULL)
setDist(v, -1)

 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):
 if getDist(v) == -1:
 DFS(G, v)

1
2
3
4
5
6
7
8
9

10
11

DFS(G, v):

foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1):

 setLabel((v, w), DISCOVERY)
 setPred(w, v)
 setDist(w, v + 1)
 DFS(G, w)
 else:
 setLabel((v, w), BACK)

12
13
14
15
16
17
18
19
20
21

A

C D

E

B

G H

F

DFS(G, v):

foreach (Vertex w : G.adjacent(v)):
if(getDist(w) == -1):

 setLabel((v, w), DISCOVERY)
 setPred(w, v)
 setDist(w, v + 1)
 DFS(G, w)
 else:
 setLabel((v, w), BACK)

12
13
14
15
16
17
18
19
20
21

A

C D

E

B

F

G H

v d P Adjacent Edges

A 0 - B C D

B 1 A A C E

C 2 B A B D E F

D 3 C A C F H

E 6 G B C G

F 4 D C D G

G 5 F E F H

H 4 D D G

H

E

G

F

D

C

B

A

State of stack when H is added:

Traversal: DFS

Discovery Edge

Back Edge

A

C

D

E

B
F

G

H

J
I

Does distance have meaning here?

Do our edge labels have meaning here?

Do we still make a spanning tree?

Running time of DFS
Labeling:

•Vertex:

• Edge:

Traversal:
•Vertex:

• Edge:

A

C

D

E

B
F

G

H

J
I

Efficiency: DFS vs BFS
BFS:

A

C D

E

B

G H

F

A B C D E F H G

DFS:

A B C D F G E H

A

C D

E

B

F

G H

Space Efficiency: DFS vs BFS

4

12

-1

5

-2
6

7
13

8

-4

-5

-63

2

1

Summary: DFS and BFS
Both are O(n+m) traversals! They label every edge and every node

|V|= n,|E|= m

BFS DFS

Solves unweighted MST

Solves shortest path

Solves cycle detection

Memory bounded by width

Solves unweighted MST

Solves cycle detection

Memory bounded by longest path

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Minimum Spanning Tree Algorithms
Input: Connected, undirected graph G with edge weights
(unconstrained, but must be additive)

Output: A graph G’ with the following properties:

•G’ is a spanning graph of G

•G’ is a tree (connected, acyclic)

•G’ has a minimal total weight among all spanning trees
A

C D

E

B

F

8 42
7 1

2 3 9 5

Kruskal’s Algorithm

A
C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

(A graph algorithm for the MST problem)

What information do I need to get efficiently?

1) The global minimum edge weight

2) Edge connections given a vertex

3) If two vertices are already connected

4) A visited list of vertices

Kruskal’s Algorithm

A
C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

(A graph algorithm for the MST problem)

What information do I need to get efficiently?

1) The global minimum edge weight

3) If two vertices are already connected

What does this tell me about my implementation choices?

Kruskal’s Algorithm

A
C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

(A graph algorithm for the MST problem)

What information do I need to get efficiently?

1) The global minimum edge weight

3) If two vertices are already connected

What does this tell me about my implementation choices?

1) We need a priority queue of edges (sorted by weight)

2) We need a disjoint set of vertices

Kruskal’s Algorithm
(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)

A C D

E

B

F G H

1) Build a priority queue on edges

2) Build a disjoint set on vertices
A

C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

Kruskal’s Algorithm
(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)

A C D

E

B

F G H

A
C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

1) Build a priority queue on edges

2) Build a disjoint set on vertices

A minheap

A sorted array
or

All vertices start as their own set

3) Loop through min edges

If edge connects two disjoint sets

Union sets and record edge in MST

4) Stop when:

N-1 edges recorded

Only a single disjoint set remains

Kruskal’s Algorithm

A
C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)

A C D

E

B

F G H

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Kruskal’s Algorithm
KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

What is the Big O?

|V|= n,|E|= m

Kruskal’s Algorithm
KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

What is the Big O?

|V|= n,|E|= m

2 — 4: O(n)

6 — 7: Heap: O(m)
Sorted List: O(m log m)

12—17:
Heap: O(log m)
Sorted List: O(1)

11: m x <12-17>

Disjoint set we treat as O(1) b/c path compression w/ smart union

Kruskal’s Algorithm
Priority Queue:

Heap Sorted Array

Building
 :7

Each removeMin
 :12

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Kruskal’s Algorithm
Priority Queue:

Heap Sorted Array

Building
 :7 O(m) O(m log m)

Each removeMin
 :12 O(m log m) O(m)

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Both result in m + m log m
Why is heap good?
If edge weights can change!

Why is sorted array good?
Sorted array not destroyed and can be useful in other algorithms!

Kruskal’s Algorithm
Priority Queue:

Total Running Time

Heap

Sorted Array

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Kruskal’s Algorithm
Priority Queue:

Total Running Time

Heap O(n)+O(m) + O(m log m)

Sorted Array O(n) + O(m log m) + O(m)

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Neat trick: O(log m) = O(log n)
Bounds of n & m relationship?

 n − 1 ≤ m ≤ n2

Connected graph Complete graph

