
Department of Computer Science

Data Structures
MST 2

November 3, 2025 CS 225
Brad Solomon

Learning Objectives

Review the minimum spanning tree (with weights)

Review Kruskal’s / Prim’s MST Algorithms

Focus on determining Big O of complex pseudocode

Compare implementations under different conditions

Minimum Spanning Tree Algorithms
Input: Connected, undirected graph G with edge weights
(unconstrained, but must be additive)

Output: A graph G’ with the following properties:

•G’ is a spanning graph of G

•G’ is a tree (connected, acyclic)

•G’ has a minimal total weight among all spanning trees
A

C D

E

B

F

8 42
7 1

2 3 9 5

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Kruskal’s Algorithm

A
C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

(A graph algorithm for the MST problem)

What information do I need to get efficiently?

1) The global minimum edge weight

3) If two vertices are already connected

What does this tell me about my implementation choices?

1) We need a priority queue of edges (sorted by weight)

2) We need a disjoint set of vertices

Kruskal’s Algorithm
(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)

A C D

E

B

F G H

1) Build a priority queue on edges

2) Build a disjoint set on vertices
A

C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

Kruskal’s Algorithm
(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)

A C D

E

B

F G H

A
C

D E

B

F
G

H
16

5
5

2

15

16
10 11

12

2
8

94
12

17
13

1) Build a priority queue on edges

2) Build a disjoint set on vertices

A minheap

A sorted array
or

All vertices start as their own set

3) Loop through min edges

If edge connects two disjoint sets

Union sets and record edge in MST

4) Stop when:

N-1 edges recorded

Only a single disjoint set remains

Kruskal’s Algorithm
KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1) Build a priority queue on edges

2) Build a disjoint set on vertices

A minheap

A sorted array
or

All vertices start as their own set

3) Loop through min edges

If edge connects two disjoint sets

Union sets and record edge in MST

4) Stop when:

N-1 edges recorded

Only a single disjoint set remains

Kruskal’s Algorithm
KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

What is the Big O?

|V|= n,|E|= m

Kruskal’s Algorithm
KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

What is the Big O?

|V|= n,|E|= m

2 — 4: O(n)

6 — 7: Heap: O(m)
Sorted List: O(m log m)

12—17:
Heap: O(log m)
Sorted List: O(1)

11: m x <12-17>

Disjoint set we treat as O(1) b/c path compression w/ smart union

Kruskal’s Algorithm
Priority Queue:

Heap Sorted Array

Building
 :7

Each removeMin
 :12

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Kruskal’s Algorithm
Priority Queue:

Heap Sorted Array

Building
 :7 O(m) O(m log m)

Each removeMin
 :12 O(m log m) O(m)

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Both result in m + m log m
Why is heap good?
If edge weights can change!

Why is sorted array good?
Sorted array not destroyed and can be useful in other algorithms!

Kruskal’s Algorithm
Priority Queue:

Total Running Time

Heap

Sorted Array

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Kruskal’s Algorithm
Priority Queue:

Total Running Time

Heap O(n)+O(m) + O(m log m)

Sorted Array O(n) + O(m log m) + O(m)

KruskalMST(G):
 DisjointSets forest
 foreach (Vertex v : G.vertices()):
 forest.makeSet(v)

 PriorityQueue Q // min edge weight
 Q.buildFromGraph(G.edges())

 Graph T = (V, {})

 while |T.edges()| < n-1:
 Vertex (u, v) = Q.removeMin()
 if forest.find(u) != forest.find(v):
 T.addEdge(u, v)
 forest.union(forest.find(u),
 forest.find(v))

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Neat trick: O(log m) = O(log n)
Bounds of n & m relationship?

 n − 1 ≤ m ≤ n2

Connected graph Complete graph

Partition Property
Consider an arbitrary partition of the vertices on G
into two subsets U and V.

A

C

D

E

B

F

8 4
2

7 12

39

5

U V

Let e be an edge of
minimum weight across
the partition.

Then e is part of some
minimum spanning tree.

e

Partition Property

A
C

D E

B

F G

H16

5

5

2
15

16

10

11

8

912

4

17
13

9

The partition property suggests an algorithm:

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Prim’s Algorithm PrimMST(G, s):
 Input: G, Graph;
 s, vertex in G, starting vertex
 Output: T, a minimum spanning tree (MST) of G

 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A
C

D E

B

F

16

5

2
15

11

8

12

17
13

9

A B C D E F

Prim’s Algorithm PrimMST(G, s):
 Input: G, Graph;
 s, vertex in G, starting vertex
 Output: T, a minimum spanning tree (MST) of G

 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A
C

D E

B

F

16

5

2
15

11

8

12

17
13

9

A B C D E F

0, — 2, A 11, E 5, B 8, D 9, D

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Prim’s Big O |V|= n,|E|= m

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Prim’s Big O |V|= n,|E|= m

7 — 9: O(n)

12—14:

MinHeap: O(n)

Unsorted Array: O(1)

16—22: Complicated!

Depends on choice of PriorityQueue (MinHeap vs Unsorted Array)

Depends on choice of Graph (Adjacency Matrix vs Adjacency List)

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2

A B C D

0 5 2 ∞

B, 5

C, 2

D, ∞

D

2

1

Adj. Matrix Adj. List

Heap
O(n) + __________ + O(n^2) + ______________ O(n) + __________ + O(m) + ______________

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2

A B C D

0 5 2, A ∞

B, 5

D, ∞

D

2

1

Adj. Matrix Adj. List

Heap
O(n) + O(n log n) + O(n^2) + ______________ O(n) + O(n log n) + O(m) + ______________

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2

A B C D

0 5 2, A ∞

B, 5

D, ∞

D

2

1

Adj. Matrix Adj. List

Heap
O(n) + O(n log n) + O(n^2) + O(m log n) O(n) + O(n log n) + O(m) + O(m log n)

1) Change minheap value

2) HeapifyUp()

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2
D

2

1

Adj. Matrix Adj. List

Heap O(n2 + m lg(n)) O(n lg(n) + m lg(n))

Unsorted
Array

(A, 0)
(D, ∞)
(C, 2)
(B, 5)

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Adj. Matrix Adj. List

Heap O(n2 + m lg(n)) O(n lg(n) + m lg(n))

Unsorted
Array O(n2) O(n2)

Prim’s Algorithm
Sparse Graph:

Dense Graph:

MST Algorithm Runtime:

Sparse Graph:

Dense Graph:

Kruskal’s Algorithm:
O(n + m log (n))

Prim’s Algorithm:
O(n log(n) + m log (n))

Suppose I have a new heap:

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Binary Heap Fibonacci Heap

Remove
Min

O(lg(n)) O(lg(n))

Decrease
Key

O(lg(n)) O(1)*

What’s Prim’s updated running time?

Shortest Path
A

C D

E

B

G H

F

