Data Structures

MST 2

CS 225 November 3, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review the minimum spanning tree (with weights)
Review Kruskal’s / Prim’'s MST Algorithms
Focus on determining Big O of complex pseudocode

Compare implementations under different conditions

Minimum Spanning Tree Algorithms

Input: Connected, undirected graph G with edge weights
(unconstrained, but must be additive)

Output: A graph G’ with the following properties:

« G’ is a spanning graph of G

« G’ is a tree (connected, acyclic)

« G’ has a minimal total weight among all spanning trees

8 ® 4

2 3 oo
(E) (E)

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

Kruskal’s Algo rithm (A graph algorithm for the MST problem)

What information do | need to get efficiently?

1) The global minimum edge weight

3) If two vertices are already connected

What does this tell me about my implementation choices?
1) We need a priority queue of edges (sorted by weight)

2) We need a disjoint set of vertices

Kruskal’s Algorithm 1) Build a priority queue on edges

(A, D)
(E, H)
(F, G)
(A, B)
(8, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C) |
(D, E) @
(B, C)

(C, D) |
(A, F) é
(D, F)

2) Build a disjoint set on vertices

Kruskal’s Algorithm 1) Build a priority queue on edges

(A, D) A minheap

(E, H) or

(F, G) A sorted array
:g E; 2) Build a disjoint set on vertices
(G, E) All vertices start as their own set
(G, H)

(E, C) 3) Loop through min edges

((E ':)) If edge connects two disjoint sets
(F, C) | | | | Union sets and record edge in MST
(D,)

(B, C) 59 é) é) 4) Stop when:

<o) . A . A

™ é é) 8@ @5 N-1 edges recorded

(D, F) Only a single disjoint set remains

WoOoOJooUld WN =

Kruskal’s Algorithm

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v : G.vertices()):
forest.makeSet (v)

PriorityQueue Q // min edge weight
Q.buildFromGraph (G.edges ())

Graph T = (V, {})

while |T.edges ()| < n-1:
Vertex (u, v) = Q.removeMin ()

if forest.find(u) !'= forest.find(v):

T .addEdge (u, v)
forest.union(forest.find(u),
forest.find(v))

return T

1) Build a priority queue on edges
A minheap
o A sorted array
2) Build a disjoint set on vertices
All vertices start as their own set
3) Loop through min edges
If edge connects two disjoint sets
Union sets and record edge in MST
4) Stop when:
N-1 edges recorded

Only a single disjoint set remains

|IV|=n, |E|]=m

Kruskal’'s Algorithm
What is the Big O?

1 | KruskalMST (G) :

2 DisjointSets forest

3 foreach (Vertex v : G.vertices()):

4 forest.makeSet (v)

5

6 PriorityQueue Q // min edge weight
7 Q.buildFromGraph (G.edges ())

8

9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
14 T .addEdge (u, v)
15 forest.union(forest.find(u),
16 forest.find(v))
17
18 return T
19

Kruskal’'s Algorithm

OWooOJdJonUl e WN =

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v :

forest.makeSet (v)

G.vertices()):
PriorityQueue Q // min edge weight
Q.buildFromGraph (G.edges ())

Graph T = (V, {})

while |T.edges ()| < n-1:
Vertex (u, v) = Q.removeMin ()

if forest.find(u) !'= forest.find(v):

T .addEdge (u, v)
forest.union(forest.find(u),
forest.find(v))

return T

|IV|=n, |E|]=m

What is the Big O?
2—4:0(n)
Heap: O(m)

Sorted List: O(m log m)

1T:mx<12-17>
Heap: O(log m)

12—=17: Sorted List: O(1)

Disjoint set we treat as O(1) b/c path compression w/ smart union

Kruskal’s Algorithm

2 DisjointSets forest
Sorted Array 3 foreach (Vertex v : G.vertices()):
Building 4 forest.makeSet (v)
. 5
7 6 PriorityQueue Q // min edge weight
Each removeMin 7 Q.buildFromGraph (G.edges ())
112 8
9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
14 T .addEdge (u, v)
15 forest.union(forest.find(u),
16 forest.find(v))
17
18 return T
19

Kruskal’s Algorithm

Priority Queue:
Sorted Array

Buﬂdlng

O(m) O(m log m)

Each removeMin

12 O(m log m)

O(m)

Both resultinm + mlogm
Why is heap good?
If edge weights can change!

Why is sorted array good?

OWooOJoUldWN =

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v :

forest.makeSet (v)

G.vertices()):

PriorityQueue Q // min edge weight
Q.buildFromGraph (G.edges ())

Graph T = (V, {})

while |T.edges ()| < n-1:
Vertex (u, v) = Q.removeMin ()
if forest.find(u) '= forest.find(v):

T .addEdge (u, v)
forest.union(forest.find(u),
forest.find(v))

return T

Sorted array not destroyed and can be useful in other algorithms!

Kruskal’s Algorithm

. . 2 DisjointSets forest
Total Running Time 3 foreach (Vertex v : G.vertices()):
Heap 4 forest.makeSet (v)
5
6 PriorityQueue Q // min edge weight
Sorted Array 7 Q.buildFromGraph (G.edges ())
8
9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
14 T .addEdge (u, v)
15 forest.union(forest.find(u),
16 forest.find(v))
17
18 return T
19

Kruskal’'s Algorithm

. . 2 DisjointSets forest
Total Running Time 3 foreach (Vertex v : G.vertices()):
Heap O(n)+O(m) + O(m log m) 4 forest.makeSet (v)
5
6 PriorityQueue Q // min edge weight
Sorted Array O(n) + O(m log m) + O(m) 7 Q.buildFromGraph (G.edges ())
8
9 Graph T = (V, {})
10
11 while |T.edges ()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) '= forest.find(v):
1 . —_ 14 T .addEdge (u, v)
Neat trICk O(Iog m) — O(Iog n) 15 forest.union(forest.find(u),
. . 16 forest.find(v))
Bounds of n & m relationship? | 1
18 return T
9 19
n—1<m<n

Connected graph ~ Complete graph

Partition Property

Consider an arbitrary partition of the vertices on G
into two subsets U and V.

Let e be an edge of
minimum weight across
the partition.

Then e is part of some
minimum spanning tree.

Partition Property

The partition property suggests an algorithm:

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

http://csunplugged.org/minimal-spanning-trees/

[] []
Prim’s Algorithm [i]ezmsre, =
2 Input: G, Graph;
9 15 3 s, vertex in G, starting vertex
4 Output: T, a minimum spanning tree (MST) of G
5
6 foreach (Vertex v : G.vertices()):
7 d[v] = +inf
8 plv] = NULL
9 d[s] = 0
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat n times:
16 Vertex m = Q.removeMin ()
17 T.add (m)
18 foreach (Vertex v : neighbors of m not in T):
19 if cost(v, m) < d[v]:
20 d[v] = cost(v, m)
21 plv] = m
22

23 return T

Prim'’s gorithm

15

2, A

11, E

5,B

8,D

9,D

OWCoOoOJoUldWN =

PrimMST (G, s):
Input: G, Graph;
s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G.vertices()):

d[v] = +inf
p[v] = NULL
d[s] = O

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin ()
T.add (m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
plv] = m

return T

Prim’s Big O

|V|=n, |E|]=m

PrimMST (G, s):
foreach (Vertex v : G.vertices()):

d[v] = +inf
plv] = NULL
d[s] =0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin ()
T.add (m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
plv] = m

Prim’s Big O IVi=n,|El=m

6 | PrimMST (G, s):
7 foreach (Vertex v : G.vertices()):
/ —9: O(n) 8 d[v] = +inf
9 p[v] = NULL
10 d[s] = 0
11
12 PriorityQueue Q // min distance, defined by d[v]
12_1 4: 13 Q.bzildll;ea:(z.vertices())s e - - Y
14 Graph T // "labeled set"
1 . 15
MInHeap' O(n) 16 repeat n times:
17 Vertex m = Q.removeMin ()
Unsorted Array: O(1) | 18| r.addtm
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
. . 1 | 21 d[v] = cost(v, m)
16—22: Complicated! 2> ol - o
23
Depends on choice of PriorityQueue (MinHeap vs Unsorted Array)
Depends on choice of Graph (Adjacency Matrix vs Adjacency List)

6 | PrimMST (G, s):
A B C D 7 foreach (Vertex v : G.vertices()):
8 d[v] = +inf
9 plv] = NULL
O | 5| 2 e 10| d[s] = 0
11

12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())

14 Graph T // "labeled set"
15
16

repeat n times:

17 Vertex m = Q.removeMin ()
18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):

20 if cost(v, m) < d[v]:
21 d[v] = cost(v, m)
22 plvl] = m

23

Adj. List

O(n) + + O(n"2) + O(n) + +O(m) +

Heap

6 | PrimMST (G, s):
A B C D 7 foreach (Vertex v : G.vertices()):
8 d[v] = +inf
9 pl[v] = NULL
0| 5 |2A| e 10| d[s] = 0
11
12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())
@ 14 Graph T // "labeled set"
15
16 repeat n times:
17 Vertex m = Q.removeMin ()
18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
21 d[v] = cost(v, m)
22 plvl] = m
23

I Y

Heap

O(n) + O(n log n) + O(n"2) + O(n) + O(n log n) + O(m) +

PrimMST (G, s):

foreach (Vertex v : G.vertices()):

d[v] = +inf
plv] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin ()
T.add (m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
plv] = m

1) Change minheap value
2) HeapifyUp()

I Y

Heap

O(n) + O(n log n) + O(n”2) + O(m log n)

O(n) + O(n log n) + O(m) + O(m log n)

6 | PrimMST (G, s):
(A, 0) 7 foreach (Vertex v : G.vertices()):
(D oo) 8 d[V] = +inf
’ 9 pl[v] = NULL

(C, 2) 10 d[s] =0
11

(B, 5) 12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())
14 Graph T // "labeled set"
15
16 repeat n times:
17 Vertex m = Q.removeMin ()
18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
21 d[v] = cost (v, m)
22 plvl] = m
23

I Y

Heap O(n2 + m Ig(n)) O(n Ig(n) + m Ig(n))

Unsorted
Array

.) R 6 | PrimMST (G, s):
Prlm S Algorlthm ; fo(rie[:]ch (\::Eif:ex v : G.vertices()):

9 plv] NULL
Sparse Graph: 10| dls) = 0

12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())

14 Graph T // "labeled set"
15
16 repeat n times:
17 Vertex m = Q.removeMin ()
Dense Graph: 18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
21 d[v] = cost (v, m)
22 plvl] = m
23

I Y

Heap O(n2 + m Ig(n)) O(n Ig(n) + m Ig(n))

Unsorted
Array O(n2) O(n2)

MST Algorithm Runtime:

Kruskal’s Algorithm: Prim’s Algorithm:
O(n+mlog(n)) O(nlog(n) + mlog (n))
Sparse Graph:

Dense Graph:

Suppose | have a new heap: [N R

Remove O(lg(n)) O(lg(n))
Min

Decrease O(lg(n)) O(1)*
Key

What’s Prim’s updated running time?
PrimMST (G, s):

6 foreach (Vertex v : G.vertices()):
7 d[v] = +inf
8 plv] = NULL
9 d[s] = 0
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat n times:
16 Vertex m = Q.removeMin ()
17 T.add (m)
18 foreach (Vertex v : neighbors of m not in T):
19 if cost(v, m) < d[v]:
20 d[v] = cost(v, m)

21 plvl] = m

Chu(:)ago

o Naperville

Aurora

a
d

{355
{50)
o
Gary

a

Joliet
o

Merrillv

a
dl
4

oOttawa

al

Kanlvgakee

al
@l

Bloomington
o

a

136

'Illini Union

Mahomet
o

€l

