
Department of Computer Science

Data Structures
Single Source Shortest Path

November 5, 2025 CS 225
Brad Solomon

Exam 4 (11/12 — 11/14)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be on PL

Topics covered can be found on website

Registration is open!

https://courses.engr.illinois.edu/cs225/fa2025/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Compare Kruskal and Prim MST Algorithms

Introduce Single-Source Shortest Path Problem

Discuss Dijkstra’s Algorithm

Extend to All-Paths Shortest Path (if time)

Finish discussion about Prim’s runtime

Prim’s Algorithm PrimMST(G, s):
 Input: G, Graph;
 s, vertex in G, starting vertex
 Output: T, a minimum spanning tree (MST) of G

 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

 return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A
C

D E

B

F

16

5

2
15

11

8

12

17
13

9

A B C D E F

0, — 2, A 11, E 5, B 8, D 9, D

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Prim’s Big O |V|= n,|E|= m

7 — 9: O(n)

12—14:

MinHeap: O(n)

Unsorted Array: O(1)

16—22: Complicated!

Depends on choice of PriorityQueue (MinHeap vs Unsorted Array)

Depends on choice of Graph (Adjacency Matrix vs Adjacency List)

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2

A B C D

0 5 2 ∞

B, 5

C, 2

D, ∞

D

2

1

Adj. Matrix Adj. List

Heap
O(n) + __________ + O(n^2) + ______________ O(n) + __________ + O(m) + ______________

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2

A B C D

0 5 2, A ∞

B, 5

D, ∞

D

2

1

Adj. Matrix Adj. List

Heap
O(n) + O(n log n) + O(n^2) + ______________ O(n) + O(n log n) + O(m) + ______________

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2

A B C D

0 4 2, A 1

B, 4

D, 1

D

2

1

Adj. Matrix Adj. List

Heap
O(n) + O(n log n) + O(n^2) + O(m log n) O(n) + O(n log n) + O(m) + O(m log n)

1) Change minheap value

2) HeapifyUp()

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A

C

B

4

5

2
D

2

1

Adj. Matrix Adj. List

Heap O(n2 + m lg(n)) O(n lg(n) + m lg(n))

Unsorted
Array

(A, 0)
(D, ∞)
(C, 2)
(B, 5)

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Adj. Matrix Adj. List

Heap O(n2 + m lg(n)) O(n lg(n) + m lg(n))

Unsorted
Array O(n2) O(n2)

Prim’s Algorithm
Sparse Graph: m ~ n

Dense Graph: m ~ n2

Adj List Heap best

Unsorted Array best

MST Algorithm Runtime:

Sparse Graph: m ~ n

Dense Graph: m ~ n2

Kruskal’s Algorithm:
O(n + m log (n))

Prim’s Algorithm:
O(n log(n) + m log (n))

Suppose I have a new heap:

PrimMST(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex m = Q.removeMin()
 T.add(m)
 foreach (Vertex v : neighbors of m not in T):
 if cost(v, m) < d[v]:
 d[v] = cost(v, m)
 p[v] = m

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Binary Heap Fibonacci Heap

Remove
Min

O(lg(n)) O(lg(n))

Decrease
Key

O(lg(n)) O(1)*

What’s Prim’s updated running time?

Shortest Path
A

C D

E

B

G H

F

Dijkstra’s Algorithm (SSSP)
DijkstraSSSP(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if _______________ < d[v]:
 d[v] = _______________
 p[v] = u

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A
C

D

E

B

F G

H7

5
4

10
7

5

3

6

25

1

3

A B C D E F G H

--
0

Dijkstra’s Algorithm (SSSP)
DijkstraSSSP(G, s):
 foreach (Vertex v : G.vertices()):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if cost(u, v) + d[u] < d[v]:
 d[v] = cost(u, v) + d[u]
 p[v] = u

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A
C

D

E

B

F G

H7

5
4

10
7

5

3

6

25

3

A B C D E F G H

-- A E B G A F C
0 10 16 15 10 7 8 20

1

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP(G, s):
 foreach (Vertex v : G):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if cost(u, v) + d[u] < d[v]:
 d[v] = cost(u, v) + d[u]
 p[v] = m

 return T

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

What is the running time of Dijkstra’s Algorithm?

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP(G, s):
 foreach (Vertex v : G):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if cost(u, v) + d[u] < d[v]:
 d[v] = cost(u, v) + d[u]
 p[v] = m

 return T

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

What is the running time of Dijkstra’s Algorithm? The same as Prim's!

6-9: O(n)

11-12: O(n)

15: repeat below n x

16-22: O(log n)

[w/ Fib Heap O(1) updates]

O(m + n log n)

Dijkstra’s Algorithm (SSSP)

When we will visit B in the following graph?

A

FD E

B

C G

H

10

1

1
1 1 1

1

1

Claim: Dijkstras will always visit a node through its optimal shortest path.

Dijkstra’s Algorithm (SSSP)

When we will visit H in the following graph?

A

FD E

B

C G

H

10

1

1
1 1 1

1

1

Claim: Dijkstras will always visit a node through its optimal shortest path.

Dijkstra’s Algorithm (SSSP)

A

FD E

B

C G

H

3

1

1
1 1 1

1

1

How does Dijkstra’s algorithm handle undirected graphs?

A

C

D

E

B

F G

H
7

5
4

10
7

-5

3

-6

2
5

4

3

Dijkstra’s Algorithm (SSSP)
How does Dijkstras handle a negative weight cycle?

A

C

D

E

B

F G

H
7

5
4

10
7

-5

3

-6

2
5

4

3

Dijkstra’s Algorithm (SSSP)
How does Dijkstras handle a negative weight cycle?

Shortest Path (A ➔ E): A  F  E  (C  H  G  E)*
Length: 12 Length: -5 (repeatable)

Dijkstra’s Algorithm (SSSP)
How does Dijkstras handle a negative weight edge without a cycle?

A

C

D

E

B

F G

H
7

5
4

10
7

5

3

1

-8
5

8

3

A B C D E F G H

-- A B B F A F --
0 10 17 15 12 7 15 ∞

Dijkstra’s Algorithm (SSSP)
We assume that item pulled out of priority queue is the next smallest item

Negative weights break this assumption!

A

FD E

B

C

5

1

1 1 1

-4

A B C D E F

--

0

Dijkstra’s Algorithm (SSSP)
Recalculating all distances is possible, but algorithm runtime is very bad!

DijkstraSSSP(G, s):
 foreach (Vertex v : G):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat until Q.empty():
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if cost(u, v) + d[u] < d[v]:
 d[v] = cost(u, v) + d[u]
 p[v] = m
 if v not in Q:
 Q.push(v)
 return T

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Dijkstra’s Algorithm (SSSP)
Recalculating all distances is possible, but algorithm runtime is very bad!

DijkstraSSSP(G, s):
 foreach (Vertex v : G):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat until Q.empty():
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if cost(u, v) + d[u] < d[v]:
 d[v] = cost(u, v) + d[u]
 p[v] = m
 if v not in Q:
 Q.push(v)
 return T

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

S
X

1

1 1

1

-(X+1)

1

X+1

-(X+3)

X+2

-(X+5)

…

Worst case: ~n/2 nodes each updating ~n/2 nodes distances

…

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP(G, s):
 foreach (Vertex v : G):
 d[v] = +inf
 p[v] = NULL
 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]
 Q.buildHeap(G.vertices())
 Graph T // "labeled set"

 repeat n times:
 Vertex u = Q.removeMin()
 T.add(u)
 foreach (Vertex v : neighbors of u not in T):
 if cost(u, v) + d[u] < d[v]:
 d[v] = cost(u, v) + d[u]
 p[v] = m

 return T

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Optimal runtime:

Fibonacci Heap

If dense, unsorted list ties

Sparse: O(m + n log n)

Dense: O(n2)

Landmark Path Problem

A

C

D

E

B

F G

H3

3
3

3
3

3

3

3

3
3

3

3

J

K

L

M

3

3

3

3

3

3

3

3

What if I wanted to get the shortest path from A to G but stopping at
L along the way?

