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Exam 4 (11/12 — 11/14)

Autograded MC and one coding question

Manually graded short answer prompt

Practice exam will be on PL

Topics covered can be found on website

Registration is open!

https://courses.engr.illinois.edu/cs225/fa2025/exams/

https://courses.engr.illinois.edu/cs225/exams/


Learning Objectives

Compare Kruskal and Prim MST Algorithms 

Introduce Single-Source Shortest Path Problem

Discuss Dijkstra’s Algorithm

Extend to All-Paths Shortest Path (if time)

Finish discussion about Prim’s runtime



Prim’s Algorithm PrimMST(G, s): 
  Input: G, Graph; 
         s, vertex in G, starting vertex 
  Output: T, a minimum spanning tree (MST) of G 

  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q   // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T           // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m 

  return T
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PrimMST(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m
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Prim’s Big O |V|= n,|E|= m

7 — 9: O(n)

12—14:

MinHeap: O(n)

Unsorted Array: O(1)

16—22: Complicated!

Depends on choice of PriorityQueue (MinHeap vs Unsorted Array)

Depends on choice of Graph (Adjacency Matrix vs Adjacency List)



PrimMST(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m
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PrimMST(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m
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PrimMST(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m
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1) Change minheap value

2) HeapifyUp()



PrimMST(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m
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PrimMST(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m
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Prim’s Algorithm
Sparse Graph: m ~ n

Dense Graph: m ~ n2

Adj List Heap best

Unsorted Array best



MST Algorithm Runtime:

Sparse Graph: m ~ n

Dense Graph: m ~ n2

Kruskal’s Algorithm:
O(n + m log (n) )

Prim’s Algorithm: 
O(n log(n) + m log (n) )



Suppose I have a new heap:

PrimMST(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex m = Q.removeMin() 
    T.add(m) 
    foreach (Vertex v : neighbors of m not in T): 
      if cost(v, m) < d[v]: 
        d[v] = cost(v, m) 
        p[v] = m
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What’s Prim’s updated running time?
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Dijkstra’s Algorithm (SSSP)
DijkstraSSSP(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if _______________ < d[v]: 
        d[v] = _______________ 
        p[v] = u
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Dijkstra’s Algorithm (SSSP)
DijkstraSSSP(G, s): 
  foreach (Vertex v : G.vertices()):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = u
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Dijkstra’s Algorithm (SSSP)

DijkstraSSSP(G, s): 
  foreach (Vertex v : G):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = m 

  return T
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What is the running time of Dijkstra’s Algorithm?



Dijkstra’s Algorithm (SSSP)

DijkstraSSSP(G, s): 
  foreach (Vertex v : G):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = m 

  return T
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What is the running time of Dijkstra’s Algorithm? The same as Prim's!

6-9: O(n)

11-12: O(n)

15: repeat below n x

16-22: O(log n)

[w/ Fib Heap O(1) updates]

O(m + n log n)



Dijkstra’s Algorithm (SSSP)

When we will visit B in the following graph?
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Claim: Dijkstras will always visit a node through its optimal shortest path.



Dijkstra’s Algorithm (SSSP)

When we will visit H in the following graph?
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Claim: Dijkstras will always visit a node through its optimal shortest path.



Dijkstra’s Algorithm (SSSP)
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How does Dijkstra’s algorithm handle undirected graphs?
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Dijkstra’s Algorithm (SSSP)
How does Dijkstras handle a negative weight cycle?
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Dijkstra’s Algorithm (SSSP)
How does Dijkstras handle a negative weight cycle?

Shortest Path (A ➔ E):   A  F  E  (C  H  G  E)*
Length: 12 Length: -5  (repeatable)



Dijkstra’s Algorithm (SSSP)
How does Dijkstras handle a negative weight edge without a cycle?
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Dijkstra’s Algorithm (SSSP)
We assume that item pulled out of priority queue is the next smallest item

Negative weights break this assumption!
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Dijkstra’s Algorithm (SSSP)
Recalculating all distances is possible, but algorithm runtime is very bad!

DijkstraSSSP(G, s): 
  foreach (Vertex v : G):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat until Q.empty(): 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = m 
        if v not in Q: 
           Q.push(v) 
  return T
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Dijkstra’s Algorithm (SSSP)
Recalculating all distances is possible, but algorithm runtime is very bad!

DijkstraSSSP(G, s): 
  foreach (Vertex v : G):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat until Q.empty(): 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = m 
        if v not in Q: 
           Q.push(v) 
  return T
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…



Dijkstra’s Algorithm (SSSP)

DijkstraSSSP(G, s): 
  foreach (Vertex v : G):   
    d[v] = +inf 
    p[v] = NULL 
  d[s] = 0 

  PriorityQueue Q // min distance, defined by d[v] 
  Q.buildHeap(G.vertices()) 
  Graph T         // "labeled set" 

  repeat n times: 
    Vertex u = Q.removeMin() 
    T.add(u) 
    foreach (Vertex v : neighbors of u not in T): 
      if cost(u, v) + d[u] < d[v]: 
        d[v] = cost(u, v) + d[u] 
        p[v] = m 

  return T
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Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Optimal runtime:

Fibonacci Heap

If dense, unsorted list ties

Sparse: O(m + n log n)

Dense: O(n2)



Landmark Path Problem
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What if I wanted to get the shortest path from A to G but stopping at 
L along the way?


