Data Structures

Single Source Shortest Path

CS 225 November 5, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

YOU ARE INVITED TO

TRICK OR RESEARCH

RESEARCH FAIR, POSTER SESSION, PARTICIPATING LABS, AND CANDY!

WEDNESDAY, NOVEMBER 5, 2025

4:00 PM. TO 5:30 P.M.
Siebel School of Computing and Data Science

Be there and be scared!

%isrunpw AMBASSADORS/RESEARCH SCHOLARS

(€ o

Exam4 (11/12 — 11/14)

Autograded MC and one coding question
Manually graded short answer prompt
Practice exam will be on PL

Topics covered can be found on website

Registration is open!

https://courses.engr.illinois.edu/cs225/fa2025/exams/

https://courses.engr.illinois.edu/cs225/exams/

Learning Objectives

Finish discussion about Prim’s runtime
Compare Kruskal and Prim MST Algorithms
Introduce Single-Source Shortest Path Problem
Discuss Dijkstra’s Algorithm

Extend to All-Paths Shortest Path (if time)

Prim'’s gorithm

15

2, A

11, E

5,B

8,D

9,D

OWCoOoOJoUldWN =

PrimMST (G, s):
Input: G, Graph;
s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G.vertices()):

d[v] = +inf
p[v] = NULL
d[s] = O

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin ()
T.add (m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
plv] = m

return T

Prim’s Big O IVi=n,|El=m

6 | PrimMST (G, s):
7 foreach (Vertex v : G.vertices()):
/ —9: O(n) 8 d[v] = +inf
9 p[v] = NULL
10 d[s] = 0
11
12 PriorityQueue Q // min distance, defined by d[v]
12_1 4: 13 Q.bzildll;ea:(z.vertices())s e - - Y
14 Graph T // "labeled set"
1 . 15
MInHeap' O(n) 16 repeat n times:
17 Vertex m = Q.removeMin ()
Unsorted Array: O(1) | 18| r.addtm
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
. . 1 | 21 d[v] = cost(v, m)
16—22: Complicated! 2> ol - o
23
Depends on choice of PriorityQueue (MinHeap vs Unsorted Array)
Depends on choice of Graph (Adjacency Matrix vs Adjacency List)

6 | PrimMST (G, s):
A B C D 7 foreach (Vertex v : G.vertices()):
8 d[v] = +inf
9 plv] = NULL
O | 5| 2 e 10| d[s] = 0
11

12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())

14 Graph T // "labeled set"
15
16

repeat n times:

17 Vertex m = Q.removeMin ()
18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):

20 if cost(v, m) < d[v]:
21 d[v] = cost(v, m)
22 plvl] = m

23

Adj. List

O(n) + + O(n"2) + O(n) + +O(m) +

Heap

6 | PrimMST (G, s):
A B C D 7 foreach (Vertex v : G.vertices()):
8 d[v] = +inf
9 pl[v] = NULL
0| 5 |2A| e 10| d[s] = 0
11
12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())
@ 14 Graph T // "labeled set"
15
16 repeat n times:
17 Vertex m = Q.removeMin ()
18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
21 d[v] = cost(v, m)
22 plvl] = m
23

I Y

Heap

O(n) + O(n log n) + O(n"2) + O(n) + O(n log n) + O(m) +

Heap

PrimMST (G, s):

foreach (Vertex v : G.vertices()):

d[v] = +inf
plv] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m Q.removeMin ()
T.add (m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
plv] m

1) Change minheap value
2) HeapifyUp()

O(n) + O(n log n) + O(n”2) + O(m log n)

Adj. List

O(n) + O(n log n) + O(m) + O(m log n)

6 | PrimMST (G, s):
(A, 0) 7 foreach (Vertex v : G.vertices()):
(D oo) 8 d[V] = +inf
’ 9 pl[v] = NULL

(C, 2) 10 d[s] =0
11

(B, 5) 12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())
14 Graph T // "labeled set"
15
16 repeat n times:
17 Vertex m = Q.removeMin ()
18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
21 d[v] = cost (v, m)
22 plvl] = m
23

I Y

Heap O(n2 + m Ig(n)) O(n Ig(n) + m Ig(n))

Unsorted
Array

.) . 6 | PrimMST (G, s):
Prlm S Algorlthm ; fo(:;e[ilch=(\::§1f:ex v : G.vertices()):
9 pl[v] = NULL
Sparse Graph: m ~n 10 EEIETE
- 12 PriorityQueue Q // min distance, defined by d[v]
AdJ LISt Heap beSt 13 Q.buildHeap (G.vertices())
14 Graph T // "labeled set"
15
16 repeat n times:
17 Vertex m = Q.removeMin ()
Dense Graph: m ~ n2 18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
Unsorted Array best 2> ey e e
22 plvl] = m
23

I Y

Heap O(n2 + m Ig(n)) O(n Ig(n) + m Ig(n))

Unsorted
Array O(n2) O(n2)

MST Algorithm Runtime:

Kruskal’s Algorithm: Prim’s Algorithm:
O(n+mlog(n)) O(nlog(n) + mlog (n))

Sparse Graph: m ~ n

Dense Graph: m ~ n2

Suppose | have a new heap: [N R

Remove O(lg(n)) O(lg(n))
Min

Decrease O(lg(n)) O(1)*
Key

What’s Prim’s updated running time?
PrimMST (G, s):

6 foreach (Vertex v : G.vertices()):
7 d[v] = +inf
8 plv] = NULL
9 d[s] = 0
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat n times:
16 Vertex m = Q.removeMin ()
17 T.add (m)
18 foreach (Vertex v : neighbors of m not in T):
19 if cost(v, m) < d[v]:
20 d[v] = cost(v, m)

21 plvl] = m

Chu(:)ago

o Naperville

Aurora

a
d

{355
{50)
o
Gary

a

Joliet
o

Merrillv

a
dl
4

oOttawa

al

Kanlvgakee

al
@l

Bloomington
o

a

136

'Illini Union

Mahomet
o

€l

Dijkstra’s Algorithm (SSSP)

10
CAV/S
N}’

~©

\

A

7
@/{i
vl —

DijkstraSSSP (G, s):
foreach (Vertex v : G.vertices()):

d[v] = +inf
plv] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex u = Q.removeMin ()

T.add (u)
foreach (Vertex v : neighbors of u not in T):
if < d[v]:
dlv] =
plvl] = u

A |l 8 | c | 0o | £ | F | 6 | H_

0

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP (G, s):

7

10 f
@)/5
®

v

<E> 1

7
6
3

\2

0 10 16

~©)

15

Jﬁ
YW

K

5

10

7

foreach (Vertex v : G.vertices()):

d[v] = +inf
p[v] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex u = Q.removeMin ()
T.add (u)
foreach (Vertex v : neighbors of u not in T):
if cost(u, v) + d[u] < d[v]:
d[v] cost(u, v) + d[u]
plv] u

8

(e el felF 9B
- A E B G A F C

20

Dijkstra’s Algorithm (SSSP)

What is the running time of Dijkstra’s Algorithm?

DijkstraSSSP (G, s):

6 foreach (Vertex v : G):
7 d[v] = +inf
8 plv] = NULL
9 d[s] =0
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat n times:
16 Vertex u = Q.removeMin ()
17 T.add (u)
18 foreach (Vertex v : neighbors of u not in T):
19 if cost(u, v) + d[u] < d[v]:
20 d[v] = cost(u, v) + d[u]
21 plv] = m
22

23 return T

Dijkstra’s Algorithm (SSSP) O(m +n log)

What is the running time of Dijkstra’s Algorithm? The same as Prim's!

DijkstraSSSP (G, s):
6 foreach (Vertex v : G):
6-9: O(n) 7 d[v] = +inf
8 plv] = NULL
9 d[s] =0
10
_ . 11 PriorityQueue Q // min distance, defined by d[v]
1 1 12' O(n) 12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat n times:
15: repeat be|OW N X 16 Vertex u = Q.removeMin ()
17 T.add (u)
18 foreach (Vertex v : neighbors of u not in T):
. 19 if cost(u, v) + d[u] < d[v]:
16-22: O(|Og n) 20 d[v] = cost(u, v) + d[u]
21 plv] = m
. 22
[w/ Fib Heap O(1) updates] | 55| .eturn T

Dijkstra’s Algorithm (SSSP)
Claim: Dijkstras will always visit a node through its optimal shortest path.

When we will visit B in the following graph?

w _—&,
e w

or-eror®

Dijkstra’s Algorithm (SSSP)
Claim: Dijkstras will always visit a node through its optimal shortest path.

When we will visit H in the following graph?

w _—&,
e w

or-eror®

Dijkstra’s Algorithm (SSSP)

How does Dijkstra’s algorithm handle undirected graphs?

: OF
& 0
!

Dijkstra’s Algorithm (SSSP)

How does Dijkstras handle a negative weight cycle?

Dijkstra’s Algorithm (SSSP)

How does Dijkstras handle a negative weight cycle?

Shortest Path(A=> E): A-> F—> E—> (C> H—> G—> E)*
Length: 12 Length: -5 (repeatable)

Dijkstra’s Algorithm (SSSP)

How does Dijkstras handle a negative weight edge without a cycle?

A | B | C| D E|F |G| H_
- A B B F A F =

0 10 17 15 12 7 15 oo

Dijkstra’s Algorithm (SSSP)
We assume that item pulled out of priority queue is the next smallest item

Negative weights break this assumption!

ENEN NN

Dijkstra’s Algorithm (SSSP)

Recalculating all distances is possible, but algorithm runtime is very bad!

DijkstraSSSP (G, s):

6 foreach (Vertex v : G):

7 d[v] = +inf

8 plv] = NULL

9 d[s] =0
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat until Q.empty() :
16 Vertex u = Q.removeMin ()
17 T.add (u)
18 foreach (Vertex v : neighbors of u not in T):
19 if cost(u, v) + d[u] < d[v]:
20 d[v] = cost(u, v) + d[u]
21 plv] = m
22 if v not in Q:
23 Q.push (v)

24 return T

Dijkstra’s Algorithm (SSSP)

Recalculating all distances is possible, but algorithm runtime is very bad!
Worst case: ~n/2 nodes each updating ~n/2 nodes distances

DijkstrasSSSP (G, s):

6 foreach (Vertex v : G):

7 d[v] = +inf

8 pl[v] = NULL

9 d[s] = 0
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat until Q.empty() :
16 Vertex u = Q.removeMin ()
17 T.add (u)
18 foreach (Vertex v : neighbors of u not in T):
19 if cost(u, v) + d[u] < d[v]:
20 d[v] = cost(u, v) + d[u]
21 plv] = m
22 if v not in Q:
23 Q.push (v)

24 return T

Dijkstra’s Algorithm (SSSP) @

Dijkstras Algorithm works only on non-negative weights

Optimal implementation: D e vesten v G

6 foreach (Vertex v :
7 d[v] = +inf
. . 8 plv] = NULL
Fibonacci Heap o| dars] = o0
10
. . 11 PriorityQueue Q // min distance, defined by d[v]
If dense, unsorted list ties | 12| o.buildheap(c.vertices())
13 Graph T // "labeled set"
14
1 1 . 15 repeat n times:
optlmal runtlme' 16 Vertex u = Q.removeMin ()
17 T.add (u)
. 18 foreach (Vertex v : neighbors of u not in T):
Sparse‘ O(m +N Iog n) 19 if cost(u, v) + d[u] < d[v]:
20 d[v] = cost(u, v) + d[u]
21 plv] = m
Dense: O(n2) 22

23 return T

Landmark Path Problem

What if | wanted to get the shortest path from A to G but stopping at
L along the way?

