Data Structures and Algorithms

All Paths Shortest Path (Plus Review)

CS 225 November 7, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Introduce and discuss All-Paths Shortest Path
Review deterministic data structures in CS
An opportunity for Q&A for exam 4

Foreshadowing probabilistic data structures

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP (G, s):

7

10 f
@)/5
®

v

<E> 1

7
6
3

\2

0 10 16

~©)

15

Jﬁ
YW

K

5

10

7

foreach (Vertex v : G.vertices()):

d[v] = +inf
p[v] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex u = Q.removeMin ()
T.add (u)
foreach (Vertex v : neighbors of u not in T):
if cost(u, v) + d[u] < d[v]:
d[v] cost(u, v) + d[u]
plv] u

8

(e el felF 9B
- A E B G A F C

20

Dijkstra’s Algorithm (SSSP)

Whats the point of predecessor?
(©
|

9 7
3 @j @/ 4
. 3
5 ‘\2 .

|

)4

)

v

G 1 »(G)

(e el felF 9B
- A E B G A F C

0 10 16 15 10 7 8 20

Dijkstra’s Algorithm (SSSP) @

Dijkstras Algorithm works only on non-negative weights

Optimal implementation: D e vesten v G

6 foreach (Vertex v :
7 d[v] = +inf
. . 8 plv] = NULL
Fibonacci Heap o| dars] = o0
10
. . 11 PriorityQueue Q // min distance, defined by d[v]
If dense, unsorted list ties | 12| o.buildheap(c.vertices())
13 Graph T // "labeled set"
14
1 1 . 15 repeat n times:
optlmal runtlme' 16 Vertex u = Q.removeMin ()
17 T.add (u)
. 18 foreach (Vertex v : neighbors of u not in T):
Sparse‘ O(m +N Iog n) 19 if cost(u, v) + d[u] < d[v]:
20 d[v] = cost(u, v) + d[u]
21 plv] = m
Dense: O(n2) 22

23 return T

Floyd-Warshall Algorithm

Floyd-Warshall’s Algorithm is an alternative to Dijkstra in the presence
of negative-weight edges (not negative weight cycles).

FloydWarshall (G) :
Let d be a adj. matrix initialized to +inf
foreach (Vertex v : G):
d[v][v] =0
foreach (Edge (u, v) : G):
d[u] [v] = cost(u, v)

WoJoUld WDNR

foreach (Vertex u : G):
foreach (Vertex v : G):
10 foreach (Vertex w : G):
11 if (d[u, v] > d[u, w] + d[w, Vv])
12 d[u, v] = d[u, w] + d[w, V]

Floyd-Warshall Algorithm Eﬂnﬂ

FloydWarshall (G) :
Let d be a ad]j. matrix initialized to +inf
foreach (Vertex v : G):
d[v][v] =0

foreach (Edge (u, v) : G):

Ul dWDNR

d[u] [v] = cost(u, v)

Floyd-Warshall Algorithm

8 foreach (Vertex w : G):

9 foreach (Vertex u : G):

10 foreach (Vertex v : G):

11 if (d[u, v] > d[u, w] + d[w, Vv])
12 d[u, v] = d[u, w] + d[w, V]

Let us consider comparisons where w = A:

Floyd-Warshall Algorithm

8 foreach (Vertex w : G):

9 foreach (Vertex u : G):

10 foreach (Vertex v : G):

11 if (d[u, v] > d[u, w] + d[w, Vv])
12 d[u, v] = d[u, w] + d[w, V]

_et w be midpoint
_et u be start point
et v be end point

Let us consider comparisons where w = A:
u=A, v=A

@_>@ 0 s @—»@—»@ 0

®_>. -1 s, @—»@—»

Don't waste time if u=w or v=w!

s our distance shorter now?

Al B | C D
= o0 oo

Floyd-Warshall Algorithm

8 foreach (Vertex w : G):

9 foreach (Vertex u : G):

10 foreach (Vertex v : G):

11 if (d[u, v] > d[u, w] + d[w, Vv])
12 d[u, v] = d[u, w] + d[w, V]

_et w be midpoint
_et u be start point
et v be end point

Let us consider w = A (and u !=w and v != w):

B—© ¢ = BBO
,@ 3 Vs >®_>@ +00

@—> +oo ys, @_>@_> +00
@-;@ 2 Vs, @.,@.,@ +00

(D)—>(B) += vs. (D)—®R)—(B)
O—@© = v O-®-©

s our distance shorter now?

Al B | C D
(o o] (o o]

0 -1

8
o
I
w

Floyd-Warshall Algorithm

8 foreach (Vertex w : G):

9 foreach (Vertex u : G):

10 foreach (Vertex v : G):

11 if (d[u, v] > d[u, w] + d[w, Vv])
12 d[u, v] = d[u, w] + d[w, V]

_et w be midpoint
_et u be start point
et v be end point

Let us consider w = A (and u !=w and v != w):

B—© ¢ = BBO
,@ 3 Vs >®_>@ +00

@—> +oo ys, @_>@_> +00
@-;@ 2 Vs, @.,@.,@ +00

@—» +o0 s, @—»@—». 1
@—>© +oco VS, @—»@—»@ 400

s our distance shorter now?

Al B | C D
(o o] (o o]

0 -1

8
o
I
w

Floyd-Warshall Algorithm

8
9
10
11
12

foreach (Vertex w : G):
foreach (Vertex u : G):
foreach (Vertex v : G):
if (d[u, v] > d[u, w] + d[w, Vv])
d[u, v] = d[u, w] + d[w, v]

Let us consider w =B (and u !=w and v != w):

®—@+ v @—®-©
@) += ¥ BB

@@ v ©-E-®
©—D) -2 Vs (O—(®)—(D)

@_>@ 2 s, @—»»@
@>_>@ +oo VS, @—»»@

Floyd-Warshall Algorithm

8
9
10
11
12

foreach (Vertex w : G):
foreach (Vertex u : G):
foreach (Vertex v : G):
if (d[u, v] > d[u, w] + d[w, Vv])
d[u, v] = d[u, w] + d[w, v]

Let us consider w = C (and u !=w and v != w):

@1 v @@ -
A—D) 2 Vs (A)—(©—(D)

D@ v BO® -
—>@ 3 Vs >@—>@

O—®: v O-O-® -
@>—> 1 Vs. @—»@—» +00

no 1 3 2
ﬂoo 0 4 3
oo o 0 -2
nz 1 5 0

Floyd-Warshall Algorithm

WoJoouUuld WNR

FloydWarshall (G) :

Let d be a adj. matrix initialized to +inf
foreach (Vertex v : G):

d[v][v] =0
foreach (Edge (u, v) : G):

d[u] [v] = cost(u, v)

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex w : G):
if (d[u, v] > d[u, w] + d[w, Vv])
d[u, v] = d[u, w] + d[w, V]

[A [B | c | D
n oS3
ﬂ 5 0 4 2
0 -1 0 -2
ﬂ 2 1 5 0

Floyd-Warshall Algorithm

Running time?

FloydWarshall (G) :

6 Let d be a adj. matrix initialized to +inf
7 foreach (Vertex v : G):
8

d[v][v] =0

9 foreach (Edge (u, v) : G):
10 d[u] [v] = cost(u, V)
11
12 foreach (Vertex u : G):
13 foreach (Vertex v : G):
14 foreach (Vertex w : G):
15 if d[u, v] > d[u, w] + d[w, Vv]:

16 d[u, v] = d[u, w] + d[w, V]

Floyd-Warshall Algorithm

We aren’t storing path information! Can we fix this?

FloydWarshall (G) :

6 Let d be a adj. matrix initialized to +inf
7 foreach (Vertex v : G):
8

d[v][v] =0

9 foreach (Edge (u, v) : G):
10 d[u] [v] = cost(u, V)
11
12 foreach (Vertex w : G):
13 foreach (Vertex u : G):
14 foreach (Vertex v : G):
15 if (d[u, v] > d[u, w] + d[w, Vv])

16 d[u, v] = d[u, w] + d[w, V]

Floyd-Warshall Algorithm

FloydWarshall (G) :
6 Let d be a adj. matrix initialized to +inf
7 foreach (Vertex v : G):
8 d[v][v] =0
9 s[v][v] =0
10 foreach (Edge (u, v) : G):
11 d[u] [v] = cost(u, V)
12 s[u][v] =V
13
14 foreach (Vertex w : G):
15 foreach (Vertex u : G):
16 foreach (Vertex v : G):
17 if (d[u, v] > d[u, w] + d[w, Vv])
18 d[u, v] = d[u, w] + d[w, V]
19 s[u, v] = s[u, w]

We have only scratched the surface on graphs!

Image from Drobyshevskiy et al. Random graph
modeling: A survey of the concepts. 2019

L ets review what we've seen so far!

| ets review what we've seen so far!

-~ Always has been

Lists %@%

The not-so-secret underlying implementation for many things

Look up arbitrary location o(n) 0(1)
Insert after given element 0(1) o(n)
Remove after given element 0(1) O(n)
Insert at arbitrary location o(n) O(n)
Remove at arbitrary location O(n) O(n)
Search for an input value o(n) O(n)

Special Cases:

Stack and Queue

Taking advantage of special cases in lists / arrays

head

tail\

&)

Heap

Taking advantage of special cases in lists / arrays

Array List (Pointer implementation)
T* Start T* Size T* Capacity

l b

4 5 6 [15 9 7 |20 16| 25 | 14 | 12 | 11 ‘E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
! Tt

size_t Capacity

size t Start

Array List (Index implementation) size_t Size

Disjoint Set Implementation

Taking advantage of array lookup operations

Store an UpTree as an array, canonical items store height / size

Find(k): Repeatedly look up values until negative value

Union(ki, k2): Update smaller canonical item to point to larger

Update value of remaining canonical item

Disjoint Sets - Smart Union

Minimizing number of O(1) operations

Unionbyheight 0 1 2 3 4 5 6 7

Unionbysize 0 1 2 3 4 S5 6 7
6 6 6 8 7 10 7 -12

Both guarantee the height of the tree is: O(log n).

9
7

9
7

10
4

10
4

A

)
ogoro
ofololo

11
5

11
5

GRONOSOS

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Disjoint Sets Path Compression Find(6)

Minimizing number of O(1) operations

A A

e !
@)
@/ o

@/@f‘@

1| int DisjointSets::find(int i) {
2 if (s[i] < 0) { return i; }
3 else {

4 int root = find(s[i])

5 s[i] = root;

6

7

8

Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and
path compression with m find calls and n items has a worst case

running time of inverse Ackerman. [O(m a(n))]

This grows very slowly to the point of being treated a constant in CS.

Graph Implementation: Edge List |1V|= n, |E|=m

O . .
/ & Literally just arrays
b d
© @ @

O(1)*

insertVertex(K key):
insertEdge(Vertex v1, Vertex v2, K key):

u u | v | a
L] e fw]e)i Om
o ' removeVertex(Vertex v):
W u | wj|c

o | removeEdge(Vertex v1, Vertex v2, K key):
T2 fwl2lal incidentEdges(Vertex v):
areAdjacent(Vertex v1, Vertex v2):

Graph Implementation: Adjacency Matrix

IVI= n, |E|]=m Literally just a matrix of arrays

SN
b d insertEdge(Vertex v1, Vertex v2, K key):
removeEdge(Vertex v1, Vertex v2, K key):
areAdjacent(Vertex v1, Vertex v2):

O(n)

incidentEdges(Vertex v):

O(n)—0O(n2)

insertVertex(K key):

removeVertex(Vertex v):

Adjacency List Technically linked lists | guess

Adjacency List
Expressed as O(f)

Space n+m
insertVertex(v) 1*
removeVertex(v) deg(v)
insertEdge(u, v) 1*

min(deg(u),

removeEdge(u, v) deg(v))

incidentEdges(v) deg(v)

min(deg(u),
deg(v))

areAdjacent(u, v)

... And thats most of exam 4

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

‘_/v 1 119
0 2 | @+=—>| Frank =¥ [Francis
0 3 [@r—>| Anna |—> Peter
1 4 |@—>| Betty

Figure from Ondov et al 2016

A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat’s Primality Test

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and "' = 1 (mod n)

Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime

Probabilistic Accuracy: Fermat primality test

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

