

Data Structures and Algorithms

All Paths Shortest Path (Plus Review)

CS 225

Brad Solomon

[November 7, 2025](#)

UNIVERSITY OF
ILLINOIS
URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

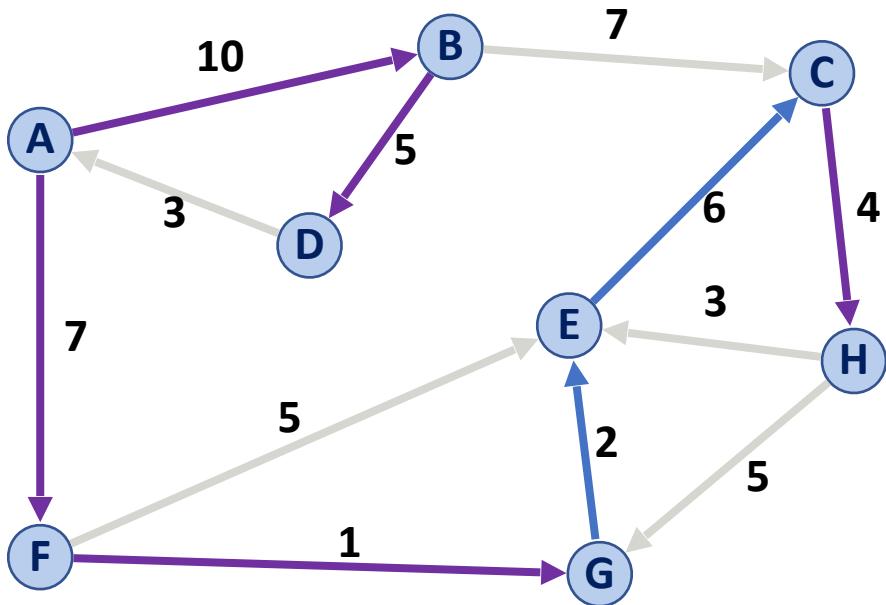
Introduce and discuss All-Paths Shortest Path

Review deterministic data structures in CS

An opportunity for Q&A for exam 4

Foreshadowing probabilistic data structures

Dijkstra's Algorithm (SSSP)

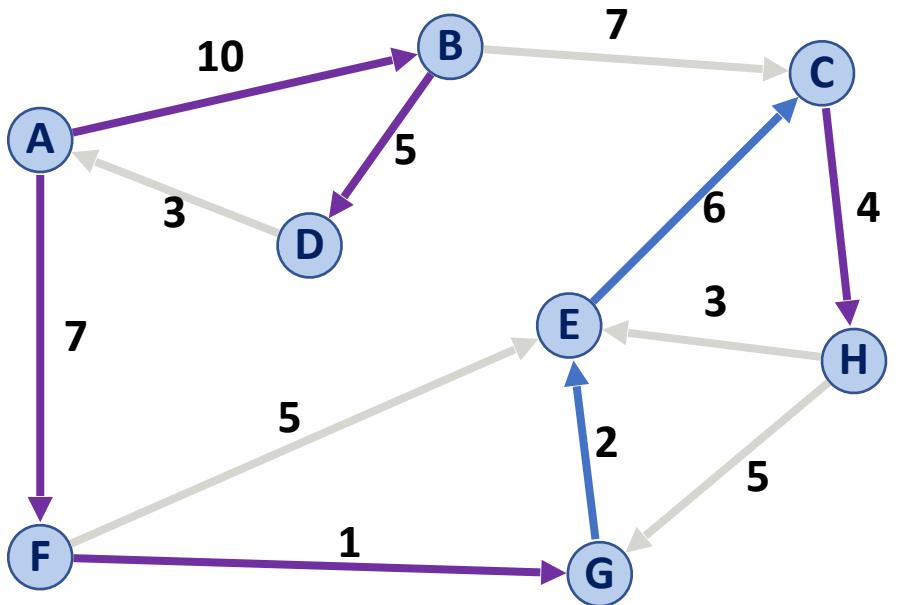


```
6 DijkstraSSSP(G, s):  
7     foreach (Vertex v : G.vertices()):  
8         d[v] = +inf  
9         p[v] = NULL  
10    d[s] = 0  
11  
12    PriorityQueue Q // min distance, defined by d[v]  
13    Q.buildHeap(G.vertices())  
14    Graph T           // "labeled set"  
15  
16    repeat n times:  
17        Vertex u = Q.removeMin()  
18        T.add(u)  
19        foreach (Vertex v : neighbors of u not in T):  
20            if cost(u, v) + d[u] < d[v]:  
21                d[v] = cost(u, v) + d[u]  
                p[v] = u
```

A	B	C	D	E	F	G	H
--	A	E	B	G	A	F	C
0	10	16	15	10	7	8	20

Dijkstra's Algorithm (SSSP)

What's the point of predecessor?



A	B	C	D	E	F	G	H
--	A	E	B	G	A	F	C
0	10	16	15	10	7	8	20

Dijkstra's Algorithm (SSSP)

Dijkstras Algorithm works only on non-negative weights

Optimal implementation:

Fibonacci Heap

If dense, unsorted list ties

Optimal runtime:

Sparse: $O(m + n \log n)$

Dense: $O(n^2)$

```
6  DijkstraSSSP(G, s):  
7      foreach (Vertex v : G):  
8          d[v] = +inf  
9          p[v] = NULL  
10         d[s] = 0  
11  
12         PriorityQueue Q // min distance, defined by d[v]  
13         Q.buildHeap(G.vertices())  
14         Graph T           // "labeled set"  
15  
16         repeat n times:  
17             Vertex u = Q.removeMin()  
18             T.add(u)  
19             foreach (Vertex v : neighbors of u not in T):  
20                 if cost(u, v) + d[u] < d[v]:  
21                     d[v] = cost(u, v) + d[u]  
22                     p[v] = u  
23  
24         return T
```

Floyd-Warshall Algorithm

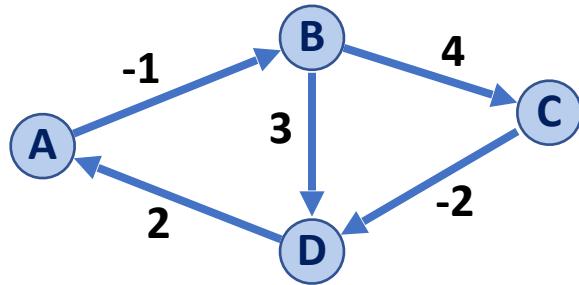
Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of **negative-weight edges (not negative weight cycles)**.

```
1  FloydWarshall(G) :  
2      Let d be a adj. matrix initialized to +inf  
3      foreach (Vertex v : G):  
4          d[v][v] = 0  
5      foreach (Edge (u, v) : G):  
6          d[u][v] = cost(u, v)  
7  
8      foreach (Vertex u : G):  
9          foreach (Vertex v : G):  
10             foreach (Vertex w : G):  
11                 if (d[u, v] > d[u, w] + d[w, v])  
12                     d[u, v] = d[u, w] + d[w, v]
```

Floyd-Warshall Algorithm

```
1 FloydWarshall(G):  
2     Let d be a adj. matrix initialized to +inf  
3     foreach (Vertex v : G):  
4         d[v][v] = 0  
5     foreach (Edge (u, v) : G):  
6         d[u][v] = cost(u, v)
```

	A	B	C	D
A				
B				
C				
D				

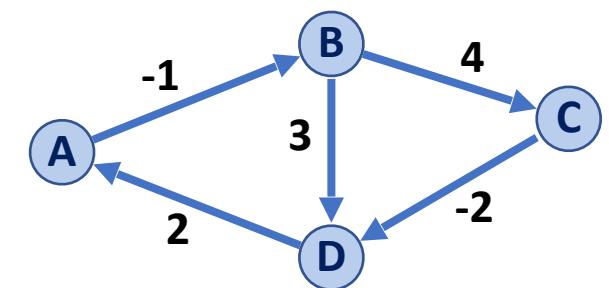


Floyd-Warshall Algorithm

```
8  foreach (Vertex w : G):  
9    foreach (Vertex u : G):  
10      foreach (Vertex v : G):  
11        if (d[u, v] > d[u, w] + d[w, v])  
12          d[u, v] = d[u, w] + d[w, v]
```

Let us consider comparisons where $w = A$:

	A	B	C	D
A	0	-1	∞	∞
B	∞	0	4	3
C	∞	∞	0	-2
D	2	∞	∞	0



Floyd-Warshall Algorithm

```
8  foreach (Vertex w : G):  
9    foreach (Vertex u : G):  
10      foreach (Vertex v : G):  
11        if (d[u, v] > d[u, w] + d[w, v])  
12          d[u, v] = d[u, w] + d[w, v]
```

Let us consider comparisons where $w = A$:

$u=A, v=A$

$u=A, v=B$

Don't waste time if $u=w$ or $v=w$!

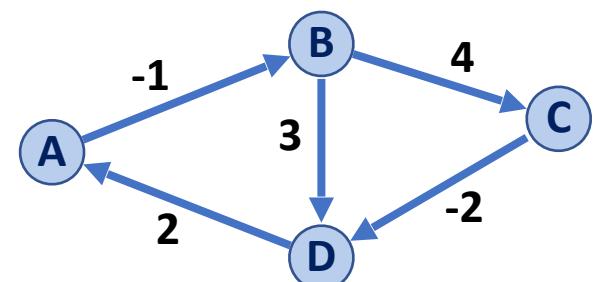
Let w be midpoint

Let u be start point

Let v be end point

Is our distance shorter now?

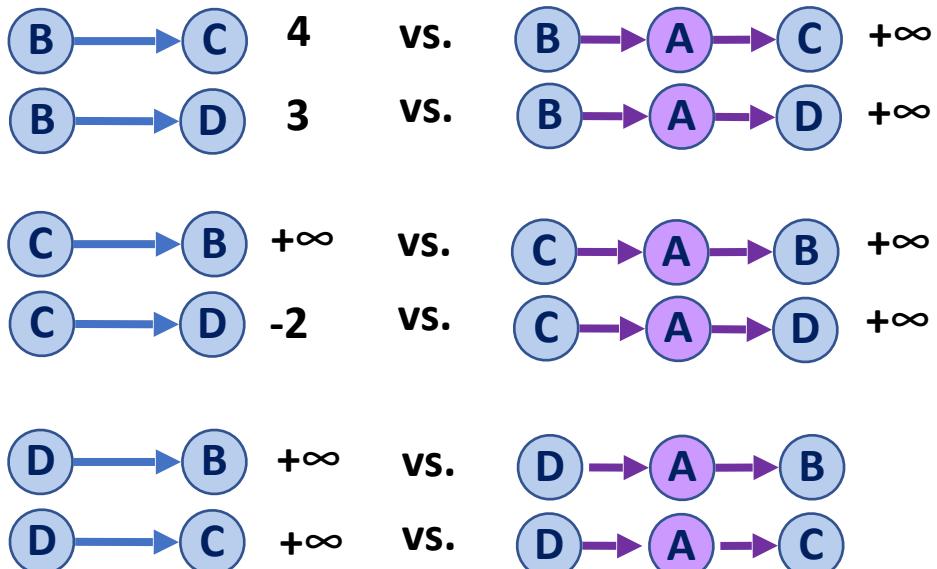
	A	B	C	D
A	0	-1	∞	∞
B	∞	0	4	3
C	∞	∞	0	-2
D	2	∞	∞	0



Floyd-Warshall Algorithm

```
8  foreach (Vertex w : G):  
9    foreach (Vertex u : G):  
10      foreach (Vertex v : G):  
11        if (d[u, v] > d[u, w] + d[w, v])  
12          d[u, v] = d[u, w] + d[w, v]
```

Let us consider $w = A$ (and $u \neq w$ and $v \neq w$):



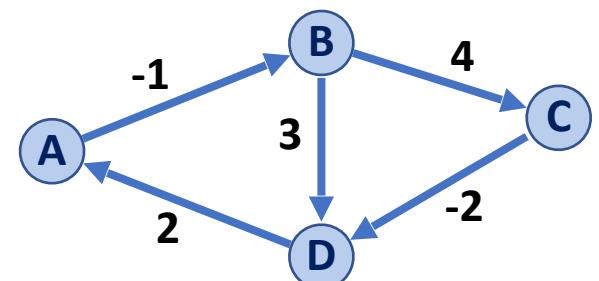
Let w be midpoint

Let u be start point

Let v be end point

Is our distance shorter now?

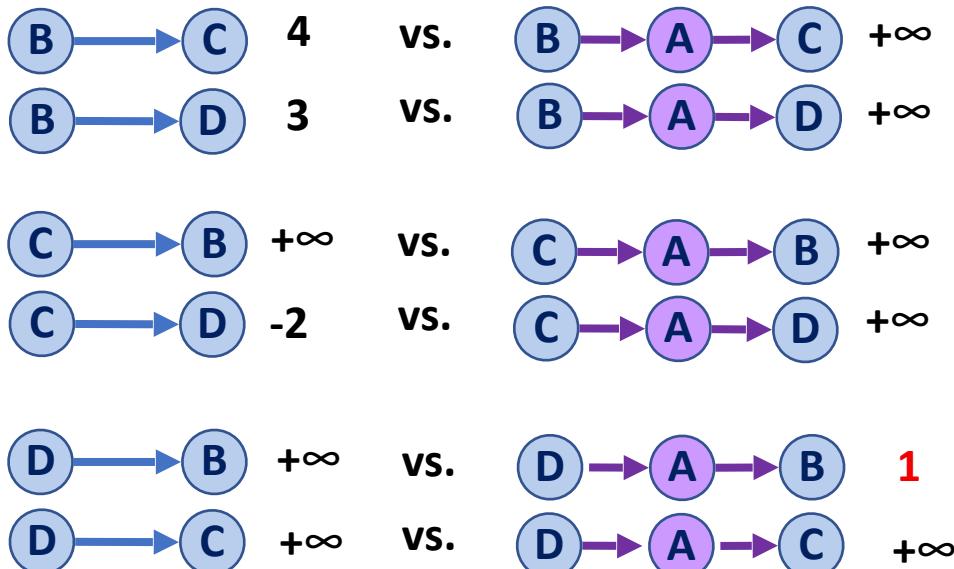
	A	B	C	D
A	0	-1	∞	∞
B	∞	0	4	3
C	∞	∞	0	-2
D	2	∞	∞	0



Floyd-Warshall Algorithm

```
8  foreach (Vertex w : G):  
9    foreach (Vertex u : G):  
10      foreach (Vertex v : G):  
11        if (d[u, v] > d[u, w] + d[w, v])  
12          d[u, v] = d[u, w] + d[w, v]
```

Let us consider $w = A$ (and $u \neq w$ and $v \neq w$):



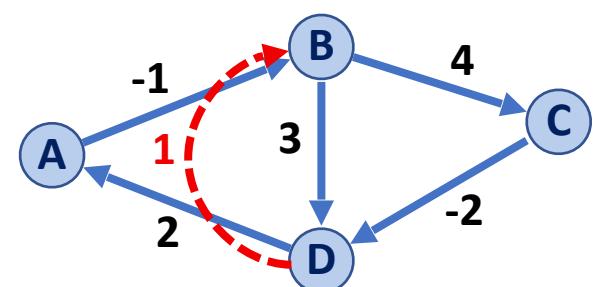
Let w be midpoint

Let u be start point

Let v be end point

Is our distance shorter now?

	A	B	C	D
A	0	-1	∞	∞
B	∞	0	4	3
C	∞	∞	0	-2
D	2	1	∞	0

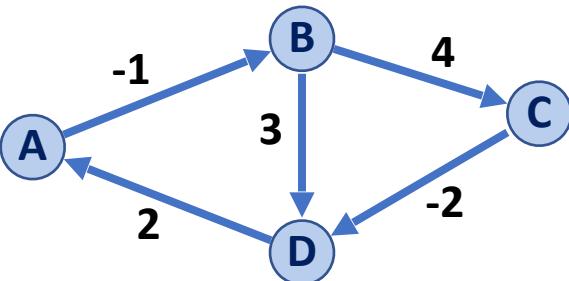


Floyd-Warshall Algorithm

```
8  foreach (Vertex w : G):  
9    foreach (Vertex u : G):  
10      foreach (Vertex v : G):  
11        if (d[u, v] > d[u, w] + d[w, v])  
12          d[u, v] = d[u, w] + d[w, v]
```

Let us consider $w = B$ (and $u \neq w$ and $v \neq w$):

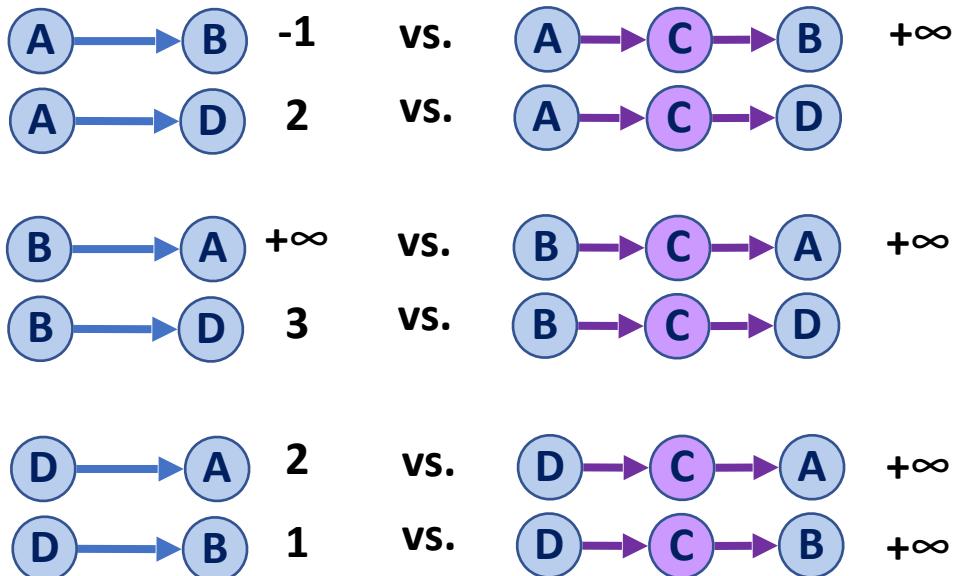
	A	B	C	D
A	0	-1	∞	∞
B	∞	0	4	3
C	∞	∞	0	-2
D	2	1	∞	0



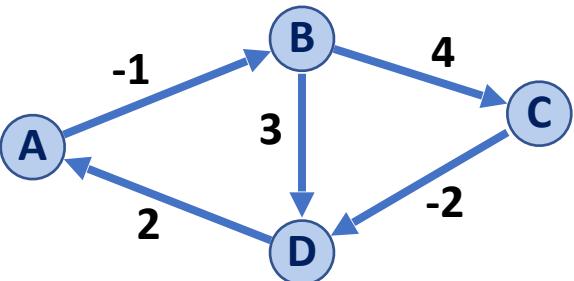
Floyd-Warshall Algorithm

```
8  foreach (Vertex w : G):  
9    foreach (Vertex u : G):  
10      foreach (Vertex v : G):  
11        if (d[u, v] > d[u, w] + d[w, v])  
12          d[u, v] = d[u, w] + d[w, v]
```

Let us consider $w = C$ (and $u \neq w$ and $v \neq w$):



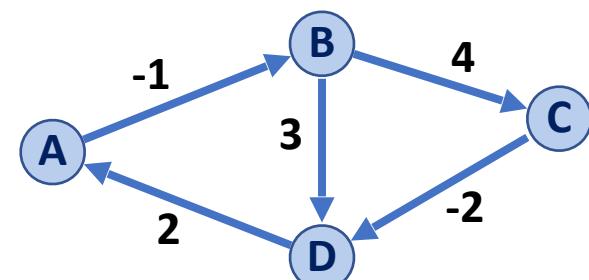
	A	B	C	D
A	0	-1	3	2
B	∞	0	4	3
C	∞	∞	0	-2
D	2	1	5	0



Floyd-Warshall Algorithm


```
1 | FloydWarshall(G) :  
2 |   Let d be a adj. matrix initialized to +inf  
3 |   foreach (Vertex v : G) :  
4 |     d[v][v] = 0  
5 |   foreach (Edge (u, v) : G) :  
6 |     d[u][v] = cost(u, v)  
7 |  
8 |   foreach (Vertex u : G) :  
9 |     foreach (Vertex v : G) :  
10 |       foreach (Vertex w : G) :  
11 |         if (d[u, v] > d[u, w] + d[w, v])  
12 |           d[u, v] = d[u, w] + d[w, v]
```

	A	B	C	D
A	0	-1	3	1
B	5	0	4	2
C	0	-1	0	-2
D	2	1	5	0



Floyd-Warshall Algorithm

Running time?

```
6  FloydWarshall(G) :  
7      Let d be a adj. matrix initialized to +inf  
8      foreach (Vertex v : G) :  
9          d[v][v] = 0  
10     foreach (Edge (u, v) : G) :  
11         d[u][v] = cost(u, v)  
12  
13         foreach (Vertex u : G) :  
14             foreach (Vertex v : G) :  
15                 foreach (Vertex w : G) :  
16                     if d[u, v] > d[u, w] + d[w, v] :  
17                         d[u, v] = d[u, w] + d[w, v]
```

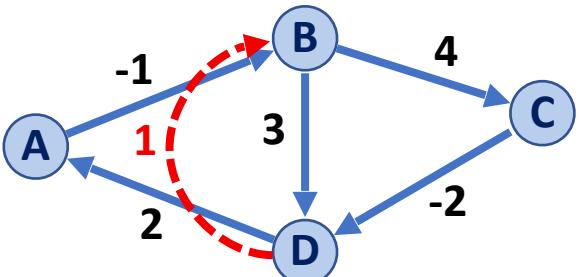
Floyd-Warshall Algorithm

We aren't storing path information! Can we fix this?

```
6  FloydWarshall(G) :  
7      Let d be a adj. matrix initialized to +inf  
8      foreach (Vertex v : G) :  
9          d[v][v] = 0  
10     foreach (Edge (u, v) : G) :  
11         d[u][v] = cost(u, v)  
12  
13         foreach (Vertex w : G) :  
14             foreach (Vertex u : G) :  
15                 foreach (Vertex v : G) :  
16                     if (d[u, v] > d[u, w] + d[w, v])  
                         d[u, v] = d[u, w] + d[w, v]
```

Floyd-Warshall Algorithm

```
6  FloydWarshall(G) :  
7      Let d be a adj. matrix initialized to +inf  
8      foreach (Vertex v : G) :  
9          d[v][v] = 0  
10     s[v][v] = 0  
11     foreach (Edge (u, v) : G) :  
12         d[u][v] = cost(u, v)  
13         s[u][v] = v  
14     foreach (Vertex w : G) :  
15         foreach (Vertex u : G) :  
16             foreach (Vertex v : G) :  
17                 if (d[u, v] > d[u, w] + d[w, v])  
18                     d[u, v] = d[u, w] + d[w, v]  
19                     s[u, v] = s[u, w]
```



	A	B	C	D
A	0	-1	∞	∞
B	∞	0	4	3
C	∞	∞	0	-2
D	2	1	∞	0

	A	B	C	D
A		B		
B			C	D
C				D
D	A			

We have only scratched the surface on graphs!

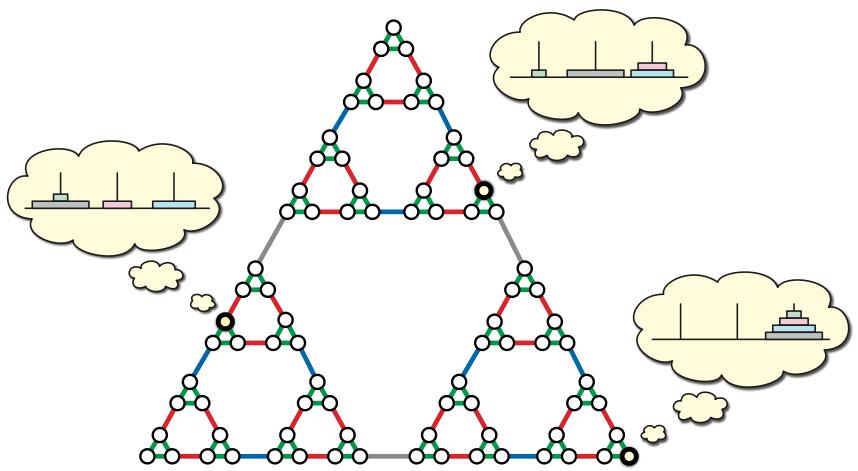
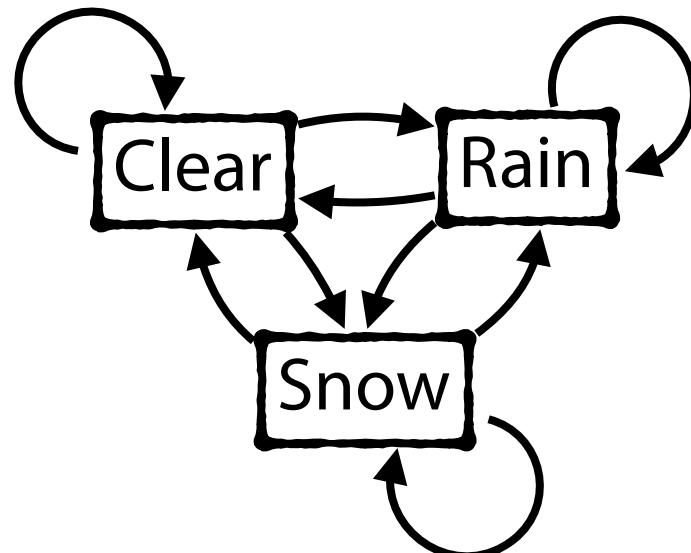


Image from Jeff Erickson Algorithms First Edition



$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix}$$

Image from Drobyshevskiy et al. **Random graph modeling: A survey of the concepts.** 2019

Lets review what we've seen so far!

Lets review what we've seen so far!

Lists

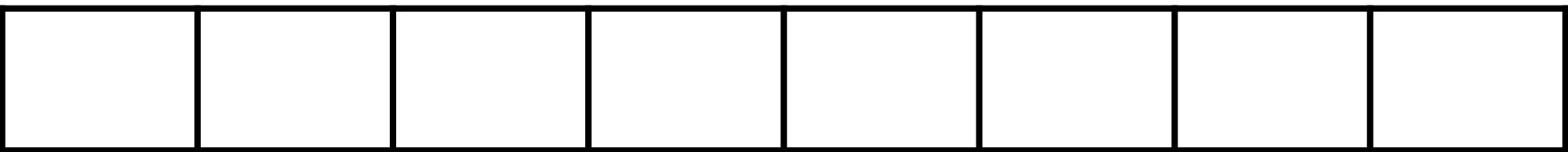
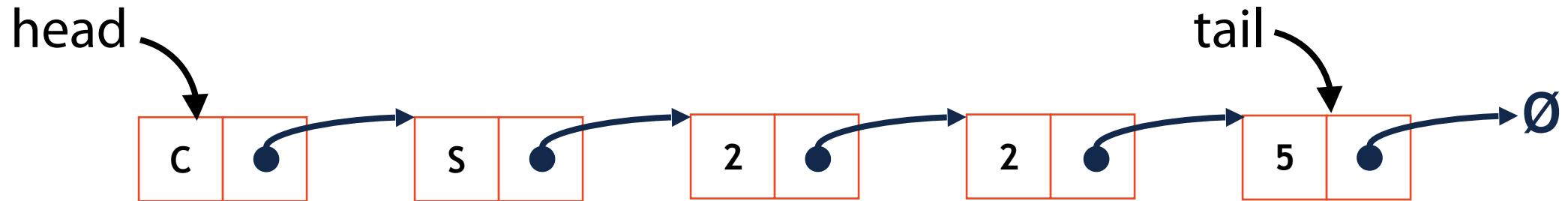
The not-so-secret underlying implementation for many things

	Singly Linked List	Array
Look up arbitrary location	$O(n)$	$O(1)$
Insert after given element	$O(1)$	$O(n)$
Remove after given element	$O(1)$	$O(n)$
Insert at arbitrary location	$O(n)$	$O(n)$
Remove at arbitrary location	$O(n)$	$O(n)$
Search for an input value	$O(n)$	$O(n)$

Special Cases:

Stack and Queue

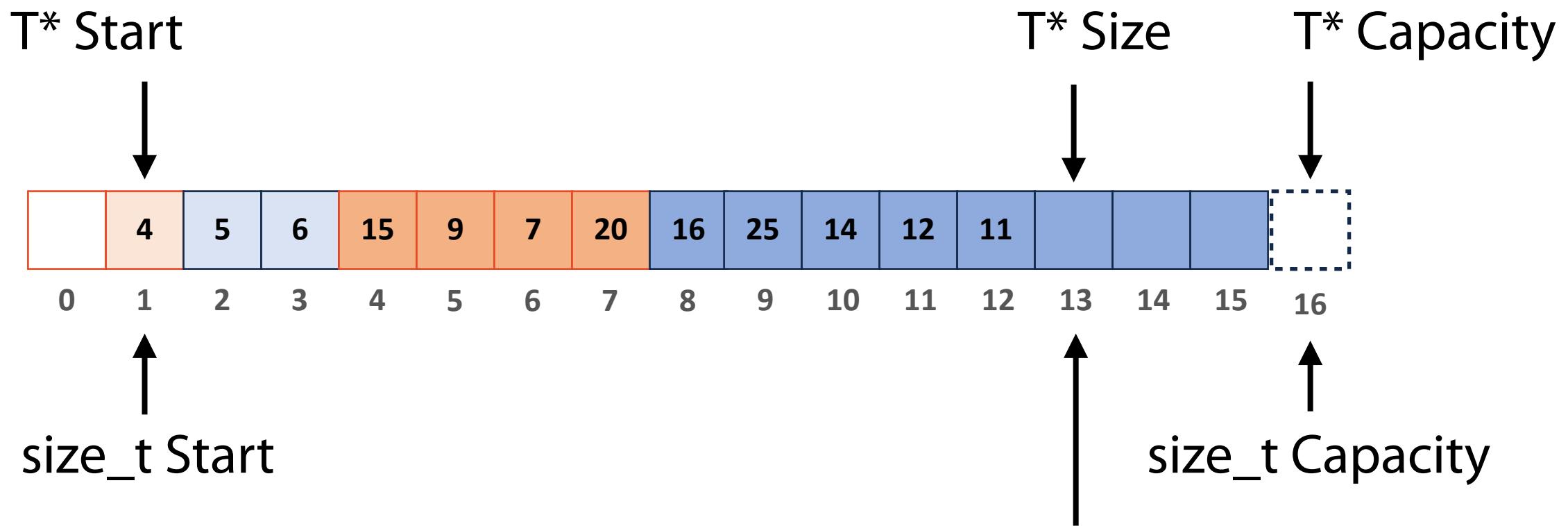
Taking advantage of special cases in lists / arrays



Heap

Taking advantage of special cases in lists / arrays

ArrayList (Pointer implementation)

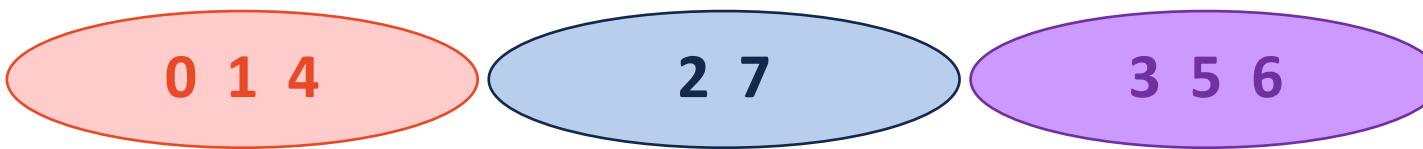


ArrayList (Index implementation)

Disjoint Set Implementation

Taking advantage of array lookup operations

Store an UpTree as an array, canonical items store **height / size**



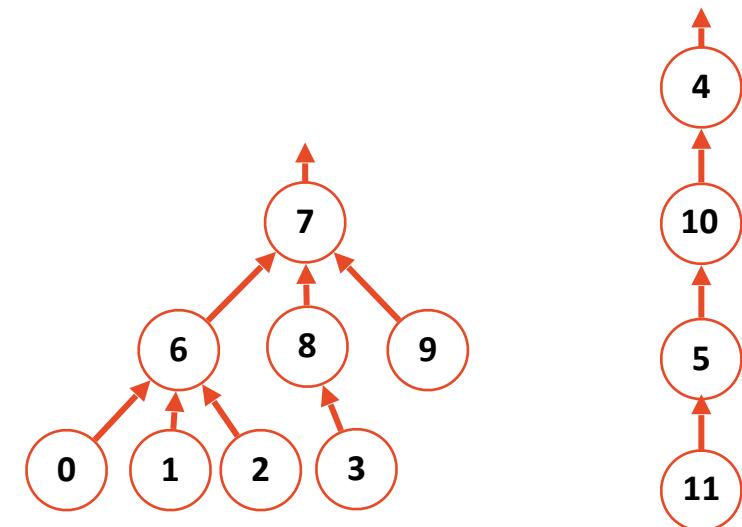
0	1	2	3	4	5	6	7
-2	0	-2	-2	0	3	3	2
-3		-2	-3				

Find(k): Repeatedly look up values until **negative value**

Union(k_1, k_2): Update **smaller** canonical item to point to larger
Update value of remaining canonical item

Disjoint Sets – Smart Union

Minimizing number of $O(1)$ operations



Union by height

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-4	10	7	4	7	7	4	5

Idea: Keep the height of the tree as small as possible.

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	7	10	7	-12	7	7	4	5

Idea: Minimize the number of nodes that increase in height

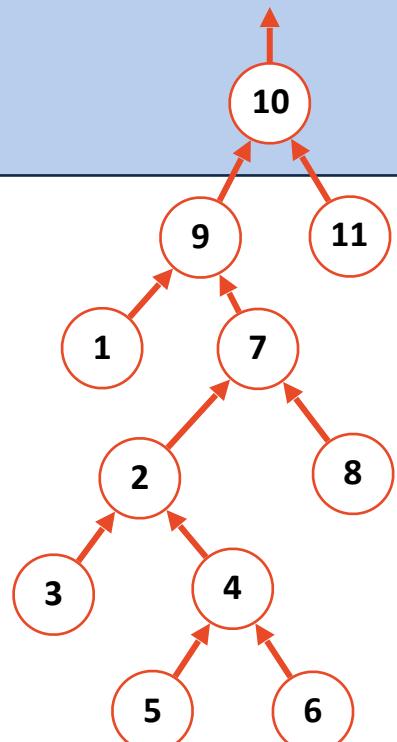
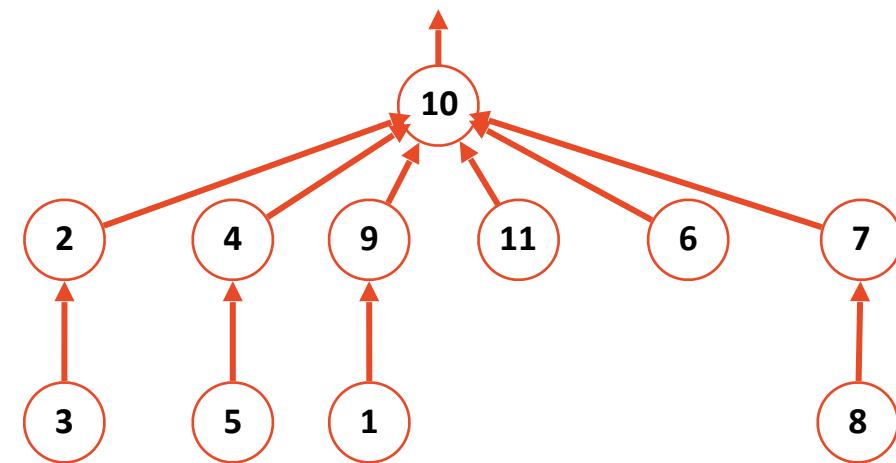
Both guarantee the height of the tree is: $O(\log n)$.

Disjoint Sets Path Compression

Find(6)

Minimizing number of $O(1)$ operations

```
1 int DisjointSets::find(int i) {  
2     if ( s[i] < 0 ) { return i; }  
3     else {  
4         int root = find( s[i] );  
5         s[i] = root;  
6         return root;  
7     }  
8 }
```

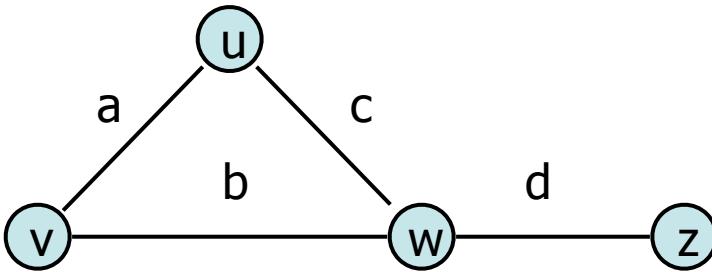


Alternative Not-Actually-A-Proof

Unproven Claim: A disjoint set implemented with smart union and path compression with m find calls and n items has a worst case running time of **inverse Ackerman**. $[O(m \alpha(n))]$

This grows *very* slowly to the point of being treated a constant in CS.

Graph Implementation: Edge List $|V| = n, |E| = m$

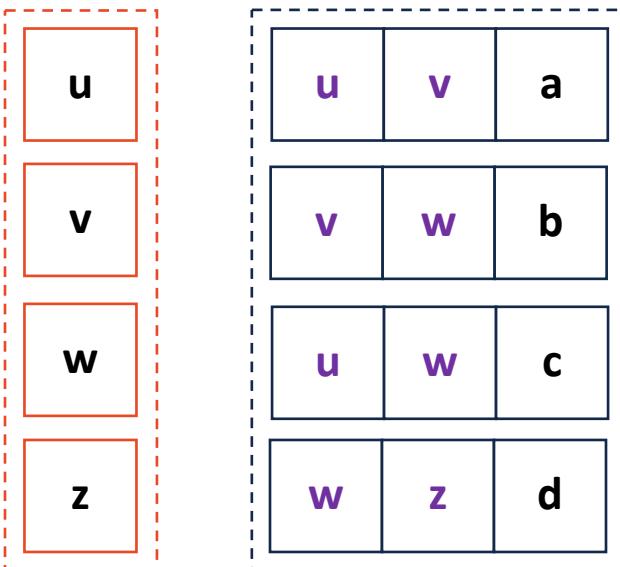


Literally just arrays

$O(1)^*$

insertVertex(K key):

insertEdge(Vertex v1, Vertex v2, K key):



$O(m)$

removeVertex(Vertex v):

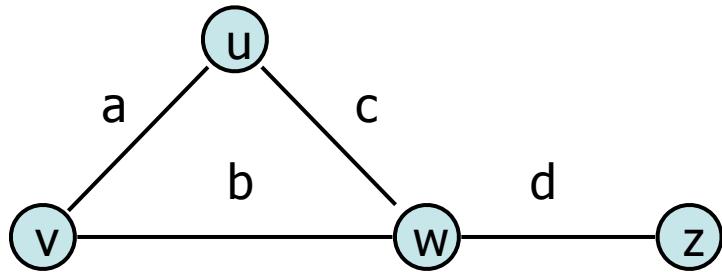
removeEdge(Vertex v1, Vertex v2, K key):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

Graph Implementation: Adjacency Matrix

$|V| = n, |E| = m$



	u	v	w	z
u	-	a	c	0
v		-	b	0
w			-	d
z				-

Literally just a matrix of arrays

$O(1)$

insertEdge(Vertex v1, Vertex v2, K key):
removeEdge(Vertex v1, Vertex v2, K key):
areAdjacent(Vertex v1, Vertex v2):

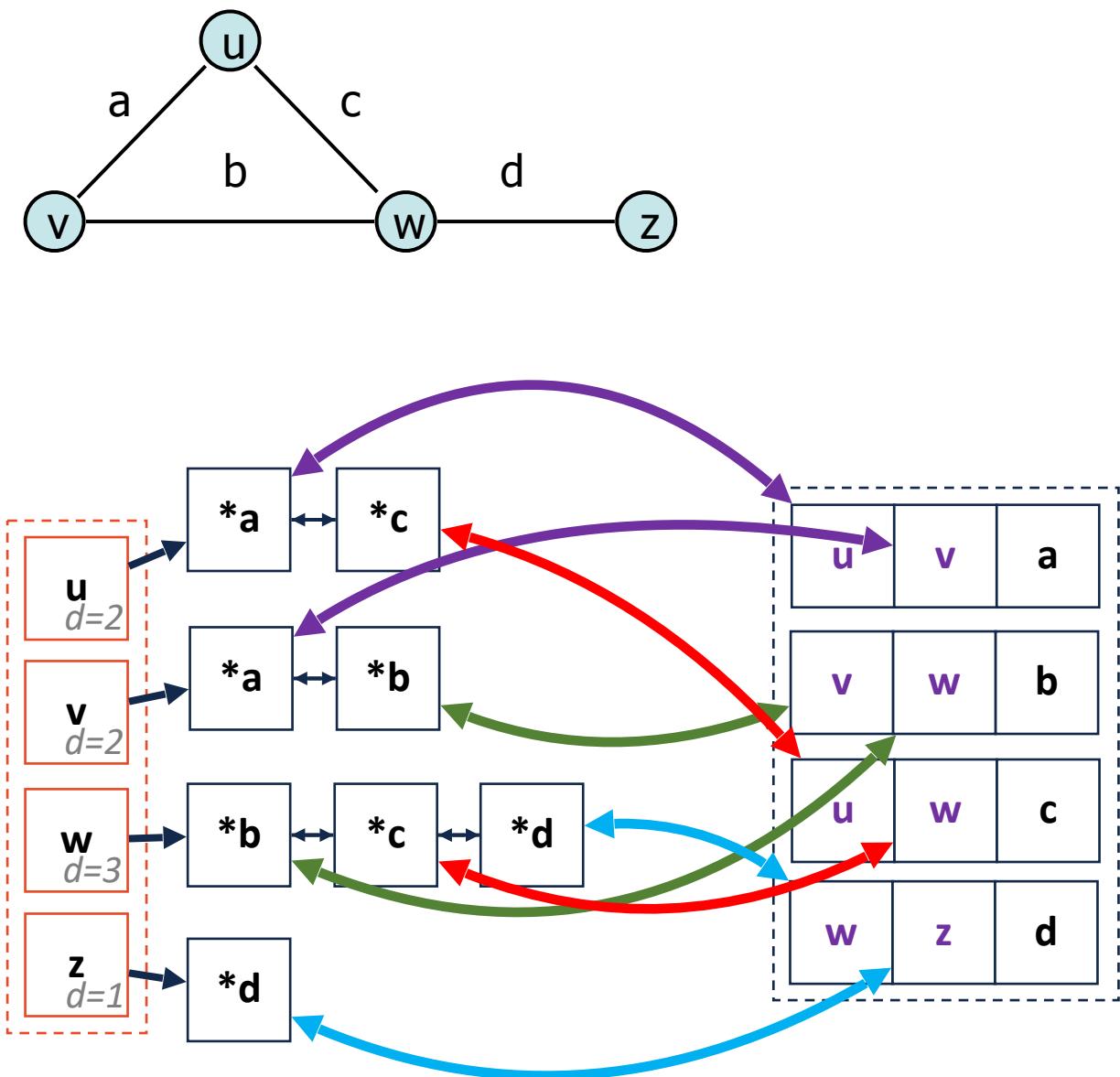
$O(n)$

incidentEdges(Vertex v):

$O(n) - O(n^2)$

insertVertex(K key):
removeVertex(Vertex v):

Adjacency List



Technically linked lists I guess

Expressed as $O(f)$	Adjacency List
Space	$n+m$
<code>insertVertex(v)</code>	1^*
<code>removeVertex(v)</code>	$\deg(v)$
<code>insertEdge(u, v)</code>	1^*
<code>removeEdge(u, v)</code>	$\min(\deg(u), \deg(v))$
<code>incidentEdges(v)</code>	$\deg(v)$
<code>areAdjacent(u, v)</code>	$\min(\deg(u), \deg(v))$

... And that's most of exam 4

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

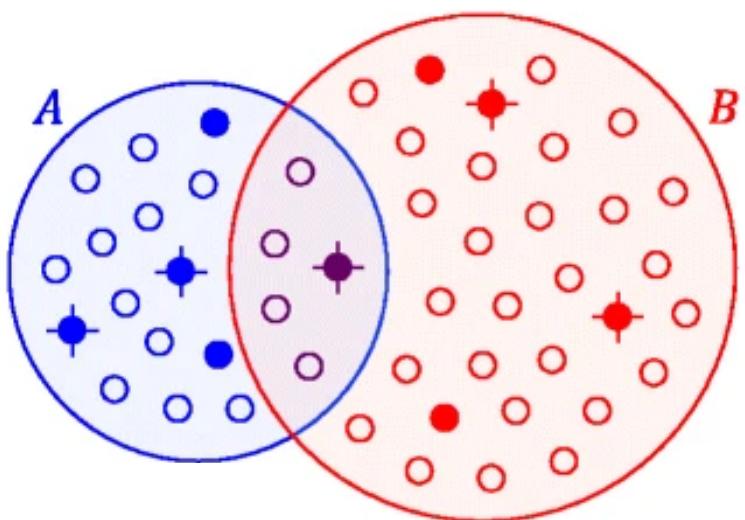
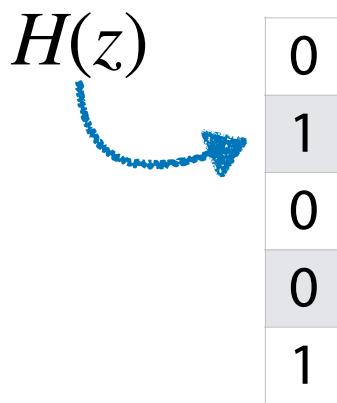
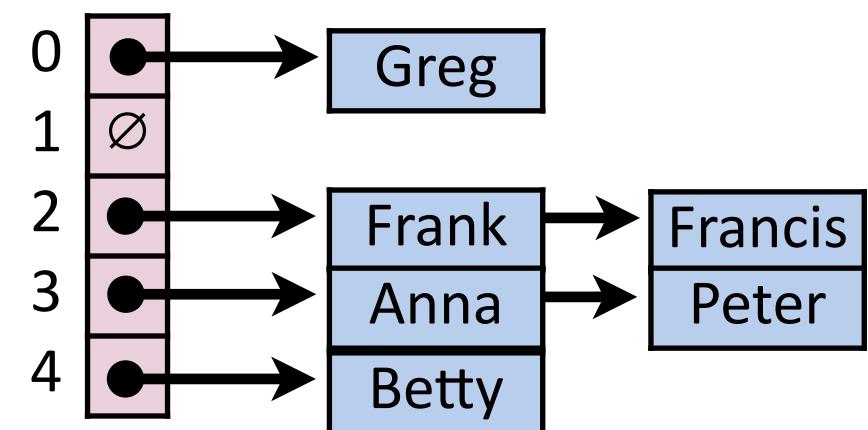


Figure from Ondov et al 2016



$H(x)$	0	2	1	0	0	4	0	2	0	6
$H(y)$	1	0	2	3	1	0	3	4	0	1
$H(z)$	2	1	0	2	0	1	0	0	7	2

A faulty list

Imagine you have a list ADT implementation **except**...

Every time you called **insert**, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test

If p is prime and a is not divisible by p , then $a^{p-1} \equiv 1 \pmod{p}$

But... ***sometimes*** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test

	$a^{p-1} \equiv 1 \pmod{p}$	$a^{p-1} \not\equiv 1 \pmod{p}$
p is prime		
p is not prime		

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions: