Data Structures and Algorithms

Probability in Computer Science

CS 225 November 10, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Formalize the concept of randomized algorithms
Review fundamentals of probability in computing

Distinguish the three main types of random’in computer science

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

‘_/v 1 119
0 2 | @+=—>| Frank =¥ [Francis
0 3 [@r—>| Anna |—> Peter
1 4 |@—>| Betty

Figure from Ondov et al 2016

A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat’s Primality Test

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and "' = 1 (mod n)

Fundamentals of Probability

Imagine you roll a pair of six-sided dice.

The sample space €2 is the set of all possible outcomes.

An event £ C Q2 is any subset.

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X]=) Pr{X=x}-x

xell

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =E|X]+ E|Y] (Claim)

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
EX+Y]=) Y PriX=xY=y}(x+y)
Xy

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
EX+Y]=) Y PriX=xY=y}(x+y)

Xy
=Y x Y PriX=xY=y}+ » y» PriX=xY=y)
X y y X

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

E[X + Y] = E[X] + E[Y]
EIX+Y]=) Y PriX=x.Y=y}(x+y)

Xy
=Y x Y PriX=xY=y}+ » y» PriX=xY=y)
X y y X

=Y x-PriX=x}+) y Pr{Y=y)
X Y

Fundamentals of Probability @

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)

N=3: AllIBuild() with every possible permutation of insert order

OO OO OO
OO OO OO

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)

G
(AR

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Let) <1 < n —1bethe number of nodes in the left subtree.

Thenforafixedi, S(n) =n—-1)+SGO)+Sn—-i—-1)

1n—1 . .
S(n)=(n—1)+—ZS(Z)+S(n—l—1)zcn In n
=0

Here’s a slide of math you should not bother learning
(in the context of CS 225)

2 n—1
Sm)y=m—-1)+ P 2 5(2) (1) Guess recurrence form S(i) = ¢ *i In(i)
i=1
2 n—1
Sm)y=m—-1)+— Z (ci In i) (2)Plugin recurrence
S

n n—1 n
Sn) <(n—1)+ %J (cx In x)dx (3) Zf(i) — J f(x)dx
i=1 1

nJ;

2 (cn? cn® ¢

lnn——+—)zcnlnn
4 4

Sn)<(n—-1)+

n

(4) [(cx [nx) dx can be expanded as shown above.

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

S(n) = (n log n)is provable but a weak argument! Why?

Randomness: Input dataset is considered random

Arguably to extend analysis to ‘find’ we also assume query is random.

Assumptions: Input dataset is uniform random in content and order

Same assumptions then extended to query

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Quicksort Algorithm
‘ 6 ‘ 1 ‘ 0 ‘ 3 ‘ 7 ‘ 9 ‘ 2 1) Pick Pivot (usually last item)

‘ 1 ‘ 0 ‘ 3 ‘ 2 9 ‘ 6 ‘ 7 ‘ 2) Split array around pivot

‘ 1 ‘ 0 ‘ 3 9 ‘ 6 3) Recurse on partitions
[1]o

1

Problem: Bad pivot leads to bad Big O!
el1fol3]7]o]2
BOBE DOujoRpBanaE
‘1‘0‘39‘6. of1]2]3]4]5 |CHEN
B0 0 0 _GiEEnn

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.
Claim: The expected time is O(n log n) for any input!

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then...

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then... y _ i i X;

i=1 j=i+1

We can prove that E[X] = O(n log n) with a proof by induction!

Expectation Analysis: Randomized Quicksort
To show E[X]| = O(n log n), we need to first get ELX;]

Claim: E[X; ;| = — :
’ j—i+1

Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: E[Xl-,j] = - Induction: Assume true for all inputs of < n

J—i+1
HEEEENE

Expectation Analysis: Randomized Quicksort

Claim: £[X; ;| = - - Induction: Assume true for all inputs of < n
P

prixli<plepdi<pl+ [] | [][]

PriX;|i > p]*Prli > p] +

Expectation Analysis: Randomized Quicksort

Claim: E[X; ;| = — Induction: Assume true for all inputs of < n
’ j—i+1

prixgli<pi<pi<pl+ L [[[| []

2 . .
By IH, 1 < <
G) P
PriX;|i > p]* Prli > p] +

2 P < i < 3
By IH, ——

J—i+1

2

Pivot must be either i or j — happens twice so ——
J—i+1

Expectation Analysis: Randomized Quicksort

E[X] = 2 2 EIX;l EIX,] =-

i=1 j=i+1 J—i+1

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+1
" I 1 1
E[X]=§2(5+§+”'+n—i+1)

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+l

1
n—i+1

)

E[X]=22(%+%+...+
=1

EX]=) 2(H, ,—1)<2n-H,<2nlnn
=1

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+1
E[X]—i2<l+l+ 4 1) 1) E Sout
= 27 3 T a—i+1 Xpand out inner sum
ElX]=) 2H, - 1) @H=1+ 1410
i=1

EX]=) 2(H, ,—1)<2n-H,<2nlnn 3)H, = 6(log n)
=1

Expectation Analysis: Randomized Quicksort @

Summary: Randomized quick sortis O(n log n) regardless of input

Randomness:

Assumptions:

Expectation Analysis: Randomized Quicksort @

Summary: Randomized quick sortis O(n log n) regardless of input

Randomness: The choice of pivot at each step

The analysis here works for any choice of input dataset!

Assumptions: Only that random numbers are actually random

While strictly not true, generally an acceptable assumption in practice

Ex: Park, Kyung Hwan, et al. "High rate true random number generator
using beta radiation." AIP Conference Proceedings. Vol. 2295. No. 1. AIP
Publishing LLC, 2020.

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Probabilistic Accuracy: Fermat primality test
Pickarandom a intherange [2, p — 2]

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and ¢! = 1 (mod n)

Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime

Probabilistic Accuracy: Fermat primality test

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness: The choice of a.

We can even pick more than one « if we want!

Assumptions: Only that random numbers are actually random

While strictly not true, generally an acceptable assumption in practice

Types of randomized algorithms

A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

