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Probability in Computer Science



Learning Objectives

Distinguish the three main types of ‘random’ in computer science

Review fundamentals of probability in computing

Formalize the concept of randomized algorithms



Randomized Algorithms
A randomized algorithm is one which uses a source of randomness 
somewhere in its implementation.
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A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.



Quick Primes with Fermat’s Primality Test
If  is prime and  is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if  is composite and n an−1 ≡ 1 (mod n)



Fundamentals of Probability
Imagine you roll a pair of six-sided dice.

The sample space  is the set of all possible outcomes.Ω

An event  is any subset.E ⊆ Ω



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X] = ∑
x∈Ω

Pr{X = x} ⋅ x



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables  and ,X Y
 (Claim)E[X + Y ] = E[X] + E[Y ]
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Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables  and ,X Y
E[X + Y ] = E[X] + E[Y ]



Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Claim:  is S(n) O(n log n)

N=3: AllBuild() with every possible permutation of insert order
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Claim:  is S(n) O(n log n)



Average-Case Analysis: BST

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1) ≈ cn ln n

Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Let  be the number of nodes in the left subtree.0 ≤ i ≤ n − 1

Then for a fixed , i S(n) = (n − 1) + S(i) + S(n − i − 1)



S(n) = (n − 1) +
2
n

n−1

∑
i=1

S(i)

S(n) ≤ (n − 1) +
2
n ∫

n

1
(cx ln x)dx

S(n) = (n − 1) +
2
n

n−1

∑
i=1

(ci ln i)

S(n) ≤ (n − 1) +
2
n ( cn2

2
ln n −

cn2

4
+

c
4 ) ≈ cn ln n

Here’s a slide of math you should not bother learning 
(in the context of CS 225)

(1) Guess recurrence form S(i) = c * i ln(i)

(2) Plug in recurrence

(3) 
n−1

∑
i=1

f(i) ≡ ∫
n

1
f(x)dx

(4)  can be expanded as shown above.∫ (cx lnx) dx



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

 is provable but a weak argument! Why?S(n) ≈ (n log n)



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

 is provable but a weak argument! Why?S(n) ≈ (n log n)

Randomness: Input dataset is considered random

Assumptions: Input dataset is uniform random in content and order

Arguably to extend analysis to ‘find’ we also assume query is random.

Same assumptions then extended to query



Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Quicksort Algorithm
1) Pick Pivot (usually last item)

2) Split array around pivot

3) Recurse on partitions
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Problem: Bad pivot leads to bad Big O!

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…



Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is  for any input!O(n log n)

Key Idea: We never compare same pair twice!

Proof: Every comparison is against a pivot, but pivot not used in recursion



Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is  for any input!O(n log n)
Let  be the total comparisons and  be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…



Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is  for any input!O(n log n)
Let  be the total comparisons and  be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then… X =
n

∑
i=1

n

∑
j=i+1

Xi,j

We can prove that  with a proof by induction!E[X] = O(n log n)



Expectation Analysis: Randomized Quicksort

Claim: . E[Xi,j] =
2

j − i + 1
Base Case: (N=2)

To show , we need to first get  E[X] = O(n log n) E[Xi,j]
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2
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Induction: Assume true for all inputs of < n
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Expectation Analysis: Randomized Quicksort

Claim: E[Xi,j] =
2

j − i + 1
Induction: Assume true for all inputs of < n

Pr[Xij | j < p] * Pr[ j < p] +

Pr[Xij | i > p] * Pr[i > p] +

Pr[Xij | i < p < j] * Pr[i < p < j]

i   <   j   <   p

p   <   i   <   j

i      p      j≤ ≤

By IH, 
2

j − i + 1

By IH, 
2

j − i + 1

Pivot must be either i or j — happens twice so   
2

j − i + 1
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E[X] =
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(3) Hn = θ(log n)

(1) Expand out inner sum

(2) Hn = 1 +
1
2

+
1
3

+ . . .

E[X] =
n

∑
i=1

2(Hn−1 − 1) ≤ 2n ⋅ Hn ≤ 2n ln n
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Summary: Randomized quick sort is  regardless of inputO(n log n)

Randomness:
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Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is  regardless of inputO(n log n)

Randomness: The choice of pivot at each step

Assumptions: Only that random numbers are actually random

The analysis here works for any choice of input dataset!

While strictly not true, generally an acceptable assumption in practice

Ex: Park, Kyung Hwan, et al. "High rate true random number generator 
using beta radiation." AIP Conference Proceedings. Vol. 2295. No. 1. AIP 
Publishing LLC, 2020.



Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



Probabilistic Accuracy: Fermat primality test

If  is prime and  is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if  is composite and n an−1 ≡ 1 (mod n)

Pick a random  in the range  a [2, p − 2]



Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep



Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial:  and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial:  and prime test returns ‘prime!’ a = a1

Third trial:  and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?



Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded) 
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:



Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded) 
runtimes at the cost of probabilistic accuracy.

Randomness: The choice of .  α

Assumptions: Only that random numbers are actually random

We can even pick more than one  if we want!α

While strictly not true, generally an acceptable assumption in practice



Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always 
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a 
fixed number of iterations and may give the correct answer.



Next Class: Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance  

Randomized data structures ‘cheat’ tradeoffs!


