Data Structures and Algorithms

Hashing

CS 225 November 12, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Learning Objectives

Motivate and formally define a hash table

Discuss what a‘good’ hash function looks like
ldentify the key weakness of a hash table

Introduce strategies to “correct” this weakness

Data Structure Review

| have a collection of books and | want to store them in a dictionary!

What data structures can | use here?

T TO KILL A

- -

z p,l_lqg?lppow V 171> o1 >
3 i

What if O(log n) isn’t good enough?

?

i -
o]0)
>
O
-
)

O
O
O
g ,
)

if O(log n) isn’

What

J-R-R- TOLKIEN

A Hash Table based Dictionary

ISBN: 9780062265722

Call #: PR
6068.093
H35 1937

J-R-R- TOLKIEN

Chapter 1

AN UNEXPECTED PARTY

In a hole in the ground there lived a hobbit. Not a nasty, dirty,
wet hole, filled with the ends of worms and an 0ozy smell, nor
yeta dry, bare, sandy hole with nothing in it to sit down on or
to eat: it was a hobbit-hole, and that means comfort.

Ithad a perfectly round door like a porthole, painted green,
with a shiny yellow brass knob in the exact middle. The door
opened on to a tube-shaped hall like a tunnel: a very comfort-
able tunnel without smoke, with panelled walls, and floors
tiled and carpeted, provided with polished chairs, and lots
and lots of pegs for hats and coats—the hobbit was fond of
visitors. The tunnel wound on and on, going fairly but not
quite straight into the side of the hill—The Hill, as all the
people for many miles round called it—and many little round
doors opened out of it, first on one side and then on another.
No going upstairs for the hobbit: bedrooms, bathrooms, cel-
lars, pantries (lots of these), wardrobes (he had whole rooms
devoted to clothes), kitchens, dining-rooms, all were on the

ISBN: 9780062265722

Call #: PR
6068.093
H35 1937

same floor, and indeed on the same passage. The best rooms
were all on the left-hand side (going in), for these were the
only ones to have windows, deep-set round windows looking
over his garden, and meadows beyond, sloping down to the
river.
This hobbit was a very well-to-do hobbit, and his name
1

Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

A Hash Table based Dictionary

User Code (is a map):

1l |Dictionary<KeyType, ValueType> d;
2 |d[k] = v;

A Hash Table consists of three things:
1.

Hash Function

Maps a keyspace, a (mathematical) description of the keys for
a set of data, to a set of integers.

m elements

Hash Function

A hash function must be:

e Deterministic:

e Efficient:

e Defined for a certain size table:

Hash Function

(Angrave, CS 241)

i Ke Value
(Beckman, CS 421) | .
(Challon, CS 125) ' Hash function
(Davis, CS 101) - R

(Evans, CS 225)
(Fagen-Ulmschneider, CS 107)
(Gunter, CS 422)

(Herman, CS 233)

Hash Function

(Angrave, CS 241)
(Beckman, CS 421)
(Challon, CS 125)
(Davis, CS 101)

Hash function

(Evans, CS 225)
(Fagen-Ulmschneider, CS 107)
(Gunter, CS 422)

(Herman, CS 233)

-+ (key[0] -)

Key
Angrave
Beckman
Challon
» Davis
Evans
Fagen-U
Gunter

Herman

Value

241
421
125
101
225
107
422
233

General Hash Function @

An O(1) deterministic operation that maps all keys in a
universe U to a defined range of integers [0,...,m — 1]

e A hash:
e A compression:

Choosing a good hash function is tricky...
e Don’t create your own (yet*)

Hash Function
Which of the following are valid hashes?

T TO KILL A

- -

h(k) = (k firstName[0] + k. lastName[O]) % m

h(k) = (mnd() *k. numPages) % m

PJ_I(]Q(_I)IQOW V 7T7/1> O1

h(k) = (Order | insert [Order seen]) % m

Nen dbersefzt und

Hash Function

TO KILL A

- -

HEYNE(

n'
e
A
-
h
h
b
s
S
¥
3‘.
NG

Clockwork Orange

A Hash Table based Dictionary

J-R-R- TOLKIEN

) +'T'=30

Author Name
Hash Function

The Hobbit

%,

A Hash Table based Dictionary

e Value

Chapter

AN UNEXPECTED PARTY

Ina hole in the ground there lived a hobbit. Not a nasty, dirty,
wet hole, filled with the ends of worms and an 0ozy smell, nor
yeta dry, bare, sandy hole with nothing in it to sit down on or
to eat: it was a hobbit-hole, and that means comfort.

Ithad a perfectly round door like a porthole, painted green,
with a shiny yellow brass knob in the exact middle. The door
opened on to a tube-shaped hall like a tunnel: a very comfort-
able tunnel without smoke, with panelled walls
tiled and carpeted, provided with polished chairs, and lots
and lots of pegs for hats and coats—the hobbit was fond of

and floors

visitors. The tunnel wound on and on, going fairly but not
quite straight into the side of the hill—The Hill, as all the
people for many miles round called it—and many little round
doors opened out of it, first on one side and then on another.
No going upstairs for the hobbit: bedrooms, bathrooms, cel-
lars, pantries (lots of these), wardrobes (he had whole rooms
devoted to clothes,

r - T same floor, and indeed on the same passage. The best rooms
| . R. R. I l l-\ l l< IN were all on the left-hand side (going in), for these were the
-)
-

=S EOR RN ROR RN

The Hobbit

all were on the

, kitchens, dining-rooms

only ones to have windows, deep-set round windows looking
over his garden, and meadows beyond, sloping down to the

river.
’ This hobbit was a very well-to-do hobbit, and his name
1

Q| Q

A Hash Table based Dictionary

DON'T GO TO SLEEP
MSCHOLASTIC

‘R'+'S'=37

Author Name
Hash Function

The Hobbit

%)

%)

Goosebumps

%)

A Hash Table based Dictionary

) +'T'=30

Aardvarks

Anonymous

The Hobbit

Author Name %

Hash Function %

37 | Goosebumps

38 %,

By Jim Truth

Hash Collision

A hash collision occurs when multiple unigue keys hash to the
same value

J.R.R Tolkien = 30! Jim Truth = 30!
THE
Aardvarks 30 ?P7

HOBBIT Anonymous 31 O

%,
37 | Goosebumps

38 %

J-R-R- TOLKIEN
By Jim Truth

Perfect Hashing

If m > S, we can write a perfect hash with no collisions

m elements
S, a finite Keyspace
@
@
@
®

General Purpose Hashing

In CS 225, we want our hash functions to work in general.

m elements
U, Universe of Keys Key

General Purpose Hashing

If m < U, there must be at least one hash collision.

m elements
U, Universe of Keys Key

General Purpose Hashing

By fixing /1, we open ourselves up to adversarial attacks.

m elements
U, Universe of Keys Key

Image by Matthew Loffhagen

A Hash Table based Dictionary

User Code (is a map):

1 |Dictionary<KeyType, ValueType> d;
2 |d[k] = v;

A Hash Table consists of three things:
1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

e Open Hashing:

¢ Closed Hashing:

Open Hashing

In an open hashing scheme, key-value pairs are stored externally
(for example as a linked list).

D

D

D

e——p»| The

% Hobbit
J-R-R- TOLKIEN Z

Hash Collisions (Open Hashing)

A hash collision in an open hashing scheme can be resolved by
. This is called separate chaining.

Aardvarks
Anonymous o

T T 1§ The
Y E %, Hobbit
By Jim Truth Z

Insertion (Separate Chaining) _insert (“Bob”)

_insert (“Anna”)

Key Value Hash 0D
Bob B+ 2 1|2
Anna A- 4 2 | D
Alice A+ 4 3|2
Betty B 2 419
Brett A- 2 519
Greg A 0 6|9
Sue B 7/ 719
Ali B+ 4 8|2
Laura A 7/ 9|
Lily B+ 7 10| @

Insertion (Separate Chaining) insert(“Alice”)

Key Value Hash 0D
Bob B+ 2 1|19
Anna A- 4 2 | @+—>| Bob
Alice A+ 4 3|0 B+
Betty B 2 4 %,
Brett A- 2 5 ;\; ANNa
Greg A 0 6|9 A-
Sue B 7/ 719 %
Ali B+ 4 8|2
Laura A 7/ 919
Lily B+ 7 10| @

Key Value Hash
Bob B+ 2
Anna A- 4
Alice A+ 4
Betty B 2
Brett A- 2
Greg A 0
Sue B 7/
Ali B+ 4
Laura A 7/
Lily B+ 7

OO0 NOOULL B WN - O

[
o

Insertion (Separate Chaining)

QI QI Q|| :;;. Q JiCQ Q

Bob

B+

Alice

A+

Anna

Key Value Hash
Bob B+ 2
Anna A- 4
Alice A+ 4
Betty B 2
Brett A- 2
Greg A 0
Sue B 7/
Ali B+ 4
Laura A 7/
Lily B+ 7

OO0 NOOULL B WN - O

[
o

Insertion (Separate Chaining)

Greg

Brett

A-

Betty

B

Al

B+

Alice

A+

Lily

B+

Laura

Find (Separate Chaining) _find (“Sue”)

0@
Key Hash 1o
Sue 7/ > [o
3|9
4|2
5|12
6D
7
SN ,
92 Lily Laura Sue
102 B+ A B
%)

Remove (Separate Chaining) remove (“Betty”)

Key Hash
Betty 2

Brett Betty Bob
A- B B+
D

oo NOOULL B~ WN K- O

@@@@@@@@I@@

[H
o

Hash Table (Separate Chaining)

For hash table of size m and n elements:

Find runs in:

Insert runs in:

Remove runs in:

OO0 NOOULL B~ WN KL O

[ERY
o

LE

Greg

Brett

A

1172

Al

Lily

B+

C,

Betty

A+

Laura

NINE B

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, /1, implies

1
m

Uniform:

Independent:

Separate Chaining Under SUHA Table Size: m

n iacts:
Claim: Under SUHA, expected length of chain is — Num objects: r

m
a; = expected # of items hashing to position

a—ZH Hl.,j:

{ 1if item i hashes to j

0 otherwise

Separate Chaining Under SUHA Table Size: m

n iacts:
Claim: Under SUHA, expected length of chain is — Num objects: r

m
a; = expected # of items hashing to position

{ 1if item i hashes to j
H —

a—ZH =

Ela) = E[) H,]

0 otherwise

Separate Chaining Under SUHA Table Size: m

n tacts:
Claim: Under SUHA, expected length of chain is — Num objects: r
m
a; = = expected # of items hashing to position j

a; = ZH Hl.,j —
Elaj] = E[) H,]

Ela;] = Z Pr(H,;=1)*1+ Pr(H;; = 0)*0

{ 1if item i hashes to j

0 otherwise

Separate Chaining Under SUHA Table Size: m

n iacts:
Claim: Under SUHA, expected length of chain is — Num objects: r

m
a; = expected # of items hashing to position

a—ZH Hl.,j:

Elaj] = E[) H,]

{ 1if item i hashes to j

0 otherwise

Ela;] = Z Pr(H,;= 1)* 1+ Pr(H;; = 0)*0

Ela] =n*Pr(H;; = 1)

Separate Chaining Under SUHA Table Size: m

n tacts:
Claim: Under SUHA, expected length of chain is — Num objects: r
m
a; = = expected # of items hashing to position j

{ 1if item i hashes toj
H —

a—ZH =

0 otherwise
1
E[a]] = E[ZHZ,J] Pr[Hi,j — 1] — Z

E[aj] =n* Pr(Hl.,j = 1)

Separate Chaining Under SUHA
n
Claim: Under SUHA, expected length of chain is— Table Size: m

m
a; = expected # of items hashing to position j Num objects: n
1 ifitem i hashes to |
o; = H; ; H . =
Z W { 0 otherwise
1
. m

E[aj] =n *Pr(Hl-,j =1

1

Separate Chaining Under SUHA @

Under SUHA, a hash table of size m and n elements:

Find runs in:

Insert runs in:

Remove runs in:

OO0 NOOUL B WN K- O

[ERY
o

Separate Chaining Under SUHA

Pros:

Cons:

Next time: Closed Hashing

Closed Hashing: store k,v pairs in the hash table
S={1,8, 15}
h(k) =k % 7

o U b W N L O

