
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 12, 2025

Hashing

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Learning Objectives

Discuss what a ‘good’ hash function looks like

Identify the key weakness of a hash table

Motivate and formally define a hash table

Introduce strategies to “correct” this weakness

Data Structure Review
I have a collection of books and I want to store them in a dictionary!

Aardvarks
 Anonymous

By Jim Realman

What data structures can I use here?

What if isn’t good enough?O(log n)

What if isn’t good enough?O(log n)

A Hash Table based Dictionary

ISBN: 9780062265722

Call #: PR
 6068.O93
 H35 1937

ISBN: 9780062265722

Call #: PR
 6068.O93
 H35 1937

Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

A Hash Table based Dictionary

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

User Code (is a map):

A Hash Table consists of three things:

1.

2.

3.

Hash Function
Maps a keyspace, a (mathematical) description of the keys for
a set of data, to a set of integers.

m elements
Key Value

Hash Function
A hash function must be:

• Deterministic:

• Efficient:

• Defined for a certain size table:

Hash Function

(Angrave, CS 241)

(Beckman, CS 421)

(Challon, CS 125)

(Davis, CS 101)

(Evans, CS 225)

(Fagen-Ulmschneider, CS 107)

(Gunter, CS 422)

(Herman, CS 233)

Hash function

Key Value

Hash Function

(Angrave, CS 241)

(Beckman, CS 421)

(Challon, CS 125)

(Davis, CS 101)

(Evans, CS 225)

(Fagen-Ulmschneider, CS 107)

(Gunter, CS 422)

(Herman, CS 233)

Key Value

Angrave 241
Beckman 421

Challon 125

Davis 101

Evans 225

Fagen-U 107

Gunter 422

Herman 233

(key[0] - ‘A’)

Hash function

General Hash Function
An deterministic operation that maps all keys in a
universe to a defined range of integers

O(1)
U [0,…, m − 1]

• A hash:

• A compression:

Choosing a good hash function is tricky…
• Don’t create your own (yet*)

Hash Function

Aardvarks
 Anonymous

By Jim Realman

 h(k) = (k . firstName[0] + k . lastName[0]) % m

 h(k) = (rand() * k . numPages) % m

 h(k) = (Order I insert [Order seen]) % m

Which of the following are valid hashes?

Hash Function

Aardvarks
 Anonymous

By Jim Realman

Author Name
Hash Function

A Hash Table based Dictionary

… …
27 ∅
28 ∅
29 ∅
30 The Hobbit
31 ∅
… …

‘J’ + ’T’ = 30

A Hash Table based Dictionary

Key Value

,

∅

∅

∅

∅

The Hobbit
∅

∅

Author Name
Hash Function

A Hash Table based Dictionary

… …
30 The Hobbit
31 ∅
… ∅
37 Goosebumps
38 ∅
… …

‘R’ + ’S’ = 37

… …
30 The Hobbit
31 ∅
… ∅
37 Goosebumps
38 ∅
… …

A Hash Table based Dictionary

Author Name
Hash Function

Aardvarks
 Anonymous

By Jim Truth

‘J’ + ’T’ = 30

Aardvarks
 Anonymous

By Jim Truth

Hash Collision

J.R.R Tolkien = 30! Jim Truth = 30!

A hash collision occurs when multiple unique keys hash to the
same value

… …
30 ???
31 ∅
… ∅
37 Goosebumps
38 ∅
… …

If , we can write a perfect hash with no collisionsm ≥ S

S, a finite Keyspace

Perfect Hashing

Key Value

m elements

General Purpose Hashing
In CS 225, we want our hash functions to work in general.

U, Universe of Keys Key Value

m elements

If , there must be at least one hash collision. m < U

U, Universe of Keys

General Purpose Hashing

Key Value

m elements

General Purpose Hashing
By fixing , we open ourselves up to adversarial attacks.h

Key Value

Image by Matthew Loffhagen

U, Universe of Keys
m elements

A Hash Table based Dictionary

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

User Code (is a map):

A Hash Table consists of three things:

1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

• Open Hashing:

• Closed Hashing:

Addressing hash collisions depends on your storage structure.

Open Hashing
In an open hashing scheme, key-value pairs are stored externally
(for example as a linked list).

… …
26 ∅
27 ∅
28 ∅
30
31 ∅
… …

The
Hobbit

∅

Hash Collisions (Open Hashing)

Aardvarks
 Anonymous

By Jim Truth

A hash collision in an open hashing scheme can be resolved by
________________________. This is called separate chaining.

… …
27 ∅
28 ∅
29 ∅
30
31 ∅
… …

The
Hobbit

∅

Insertion (Separate Chaining)

0 ∅
1 ∅
2 ∅
3 ∅
4 ∅
5 ∅
6 ∅
7 ∅
8 ∅
9 ∅

10 ∅

_insert(“Bob”)

_insert(“Anna”)

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
Betty B 2
Bret A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

Insertion (Separate Chaining)

0 ∅
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7 ∅
8 ∅
9 ∅

10 ∅

Bob
B+
∅

Anna
A-
∅

_insert(“Alice”)

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
Betty B 2
Bret A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
Betty B 2
Bret A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

Insertion (Separate Chaining)

0 ∅
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7 ∅
8 ∅
9 ∅

10 ∅

Bob
B+
∅

Alice
A+

Anna
A-
∅

Key Value Hash
Bob B+ 2

Anna A- 4
Alice A+ 4
Betty B 2
Bret A- 2
Greg A 0
Sue B 7
Ali B+ 4

Laura A 7
Lily B+ 7

Insertion (Separate Chaining)

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

Bret
A-

Betty
B

Bob
B+
∅

Ali
B+

Alice
A+

Anna
A-
∅

Lily
B+

Laura
A

Sue
B
∅

0 ∅
1 ∅
2 ∅
3 ∅
4 ∅
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Lily
B+

Laura
A

Sue
B
∅

Find (Separate Chaining) _find(“Sue”)

Key Hash
Sue 7

0 ∅
1 ∅
2
3 ∅
4 ∅
5 ∅
6 ∅
7 ∅
8 ∅
9 ∅

10 ∅

Bret
A-

Betty
B

Bob
B+
∅

Remove (Separate Chaining) _remove(“Betty”)

Key Hash
Betty 2

Hash Table (Separate Chaining)

remove runs in: __________.

0
1 ∅
2
3 ∅
4
5 ∅
6 ∅
7
8 ∅
9 ∅

10 ∅

Greg
A
∅

Bret
A-

Betty
B

Ali
B+

Alice
A+

Lily
B+

Laura
A

For hash table of size m and n elements:

Find runs in: _________________

Insert runs in: _________________

Remove runs in: _________________

Worst-Case behavior is bad — but what about randomness?

Hash Table

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform:

Independent:

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]
E[αj] = ∑

i

Pr(Hi,j = 1) * 1 + Pr(Hi,j = 0) * 0

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j]
E[αj] = ∑

i

Pr(Hi,j = 1) * 1 + Pr(Hi,j = 0) * 0

E[αj] = n * Pr(Hi,j = 1)

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] Pr[Hi,j = 1] =
1
m

E[αj] = n * Pr(Hi,j = 1)

Separate Chaining Under SUHA
Claim: Under SUHA, expected length of chain is

n
m

Table Size:
Num objects:

m
n

Hi,j = { 1 if item i hashes to j

0 otherwise
αj = ∑

i

Hi,j

expected # of items hashing to position j αj =

E[αj] = E[∑
i

Hi,j] Pr[Hi,j = 1] =
1
m

E[αj] = n * Pr(Hi,j = 1)

E[αj] =
n
m

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

0
1
2
3
4
5
6
7
8
9

10

Separate Chaining Under SUHA
Pros:

Cons:

Next time: Closed Hashing
Closed Hashing: store k,v pairs in the hash table

0
1
2
3
4
5
6

h(k) = k % 7
S = { 1, 8 , 15}

