Data Structures and Algorithms

Hashing 2

CS 225 November 14, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review fundamentals of hash tables

Introduce closed hashing approaches to hash collisions
Determine when and how to resize a hash table

Justify when to use different index approaches

A Hash Table based Dictionary

User Code (is a map):

1 |Dictionary<KeyType, ValueType> d;
2 |d[k] = v;

A Hash Table consists of three things:
1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

e Open Hashing: store k,v pairs externally

wN - O

“ Ali Alice Anna
Q.\ B+ A+ A-
4 %

¢ Closed Hashing: store k,v pairs in the hash table
0

1
2
3

Key Value Hash
Bob B+ 2
Anna A- 4
Alice A+ 4
Betty B 2
Brett A- 2
Greg A 0
Sue B 7/
Ali B+ 4
Laura A 7/
Lily B+ 7

OO0 NOOULL B WN - O

[
o

Hash Table (Separate Chaining)

Greg

A

%)

Brett

A-

Betty

B

Al

B+

Alice

A+

Lily

B+

Laura

Hash Table (Separate Chaining)

For hash table of size m and n elements:

Find runs in:

Insert runs in:

Remove runs in:

OO0 NOOULL B~ WN KL O

[ERY
o

LE

Greg

Brett

A

i

Al

Lily

B+

Betty
EJ

Alice

A+

Laura

NINE INE

Hash Table

Worst-Case behavior is bad — but what about randomness?
1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption
(Assume our dataset hashes optimally)

2) Create a universal hash function family:
Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, /1, implies

1
m

Uniform:

Independent:

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, &, implies

1
Vkl,kz & UWhere kl # k2) Pl’(h[kl] — h[kz]) — —
m

Uniform: All keys equally likely to hash to any position

|
Pr(hlk]) = —

m

Independent: All key’s hash values are independent of other keys

Separate Chaining Under SUHA Table Size: m

n iacts:
Claim: Under SUHA, expected length of chain is — Num objects: r

m
a; = expected # of items hashing to position

a—ZH Hl.,j:

{ 1if item i hashes to j

0 otherwise

Separate Chaining Under SUHA Table Size: m

n iacts:
Claim: Under SUHA, expected length of chain is — Num objects: r

m
a; = expected # of items hashing to position

{ 1if item i hashes to j
H —

a—ZH =

Ela) = E[) H,]

0 otherwise

Separate Chaining Under SUHA Table Size: m

n tacts:
Claim: Under SUHA, expected length of chain is — Num objects: r
m
a; = = expected # of items hashing to position j

a; = ZH Hl.,j —
Elaj] = E[) H,]

Ela;] = Z Pr(H,;=1)*1+ Pr(H;; = 0)*0

{ 1if item i hashes to j

0 otherwise

Separate Chaining Under SUHA Table Size: m

n iacts:
Claim: Under SUHA, expected length of chain is — Num objects: r

m
a; = expected # of items hashing to position

a—ZH Hl.,j:

Elaj] = E[) H,]

{ 1if item i hashes to j

0 otherwise

Ela;] = Z Pr(H,;= 1)* 1+ Pr(H;; = 0)*0

Ela] =n*Pr(H;; = 1)

Separate Chaining Under SUHA Table Size: m

n tacts:
Claim: Under SUHA, expected length of chain is — Num objects: r
m
a; = = expected # of items hashing to position j

{ 1if item i hashes toj
H —

a—ZH =

0 otherwise
1
E[a]] = E[ZHZ,J] Pr[Hi,j — 1] — Z

E[aj] =n* Pr(Hl.,j = 1)

Separate Chaining Under SUHA
n
Claim: Under SUHA, expected length of chain is— Table Size: m

m
a; = expected # of items hashing to position j Num objects: n
1 ifitem i hashes to |
o; = H; ; H . =
Z W { 0 otherwise
1
. m

E[aj] =n *Pr(Hl-,j =1

1

Separate Chaining Under SUHA @

Under SUHA, a hash table of size m and n elements:

Find runs in:

Insert runs in:

Remove runs in:

OO0 NOOUL B WN K- O

[ERY
o

(Example of closed hashing)

Collision Handling: Probe-based Hashing
s={1,8,15) IS| =n
h(k) =k % 7 |Array| =m

o U b W N R O

(Example of closed hashing)

Collision Handling: Linear Probing
s={16,8,4,13,29,11,22} |S| =n
h(k) =k % 7 |Array| =m

h(k, i):(k+i)%7
Try h(k) = (k + 0) % 7, if full...

o U b W N R O

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,8,4,13,29, 11,22} IS| =n
h(k,i)=(k+1i) % 7 |Array| = m
find (29)

0 22 -

1 8

2 16

3 29

4 4

5 11

6 13

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,38,64,13,29,6 11,22} |S| =n
h(k,i)=(k+1i) % 7 |Array| = m
remove (16)

0 22 —

1 8

2 16

3 29

4 4

5 11

6 13

A Problem w/ Linear Probing

Primary Clustering:

0 Description:
1 1L

2 1,

3 3

4 13

> R Remedy:

6

7

8

9

(Example of closed hashing)

Collision Handling: Quadratic Probing

S={16,8,4,13,29,12,22} IS| = n
h(k) =k % 7 |Array| = m
0 h(k, i) = (k +i*i) % 7
18 Try h(k) = (k + 0) % 7, if full...
2 16
3
4 4
5
6 13

A Problem w/ Quadratic Probing

Secondary Clustering:

0 04 Description:
1 0

2

3

4 03

> Remedy:

6

7

8

9 04

(Example of closed hashing)

Collision Handling: Double Hashing
S={16,38,4,13,29, 11,22} IS| =n
hi(k) =k % 7

|Array| = m
ha(k) =5 - (k % 5)

h(k, i) = (h,(k) + i*h,(K)) % 7
Try h(k) = (k + 0*h,(k)) % 7, if full...

16

o Ul b W N R O

13

Run ning Times (Don’t memorize these equations, no need.)
(Expectation under SUHA)

Open Hashing:

insert:

find/ remove:

Closed Hashing:

insert:

find/ remove:

Run ning Times (Don’t memorize these equations, no need.)
The expected number of probes for find(key) under SUHA

Linear Probing:
o Successful: %(1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))2

Instead, observe:
Double Hashing: - As o increases:
o Successful: 1/a * In(1/(1-at))
e Unsuccessful: 1/(1-a)

- If a is constant:
Separate Chaining:
e Successful: 1+ a/2
e Unsuccessful: 1 + a

Running Times
The expected number of probes for find(key) under SUHA

Linear Probing:
o Successful: %(1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))2

Probes

Double Hashing:

o Successful: 1/a * In(1/(1-a))
e Unsuccessful: 1/(1-a)

Probes

When do we resize?

Resizing a hash table

How do you resize?

Which collision resolution strategy is better?
e Big Records:

e Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

Running Times

Expectation™:

Find

Worst Case:

Expectation™:

Insert
Worst Case:

Storage Space

