

Data Structures and Algorithms

Hashing 2

CS 225

Brad Solomon

November 14, 2025

UNIVERSITY OF
ILLINOIS
URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review fundamentals of hash tables

Introduce closed hashing approaches to hash collisions

Determine when and how to resize a hash table

Justify when to use different index approaches

A Hash Table based Dictionary

User Code (is a map):

```
1 | Dictionary<KeyType, ValueType> d;  
2 | d[k] = v;
```

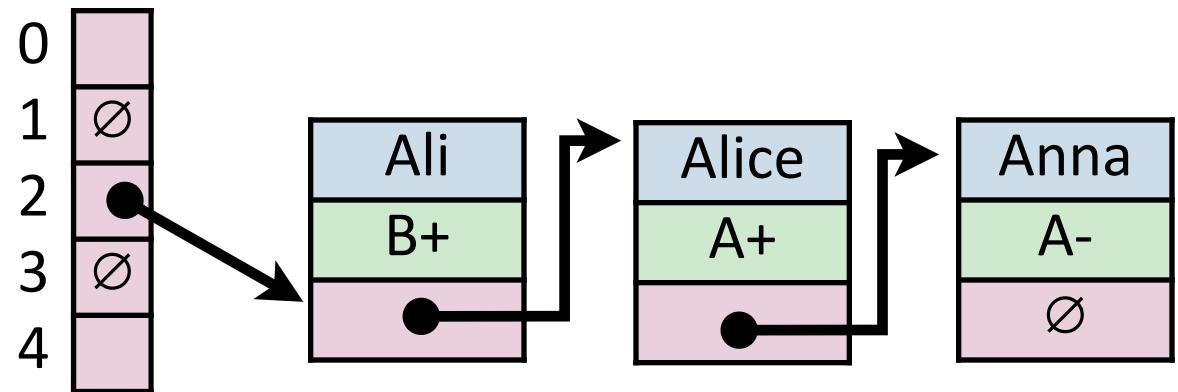
A **Hash Table** consists of three things:

1. A hash function
2. A data storage structure
3. A method of addressing *hash collisions*

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

- **Open Hashing:** store k, v pairs externally

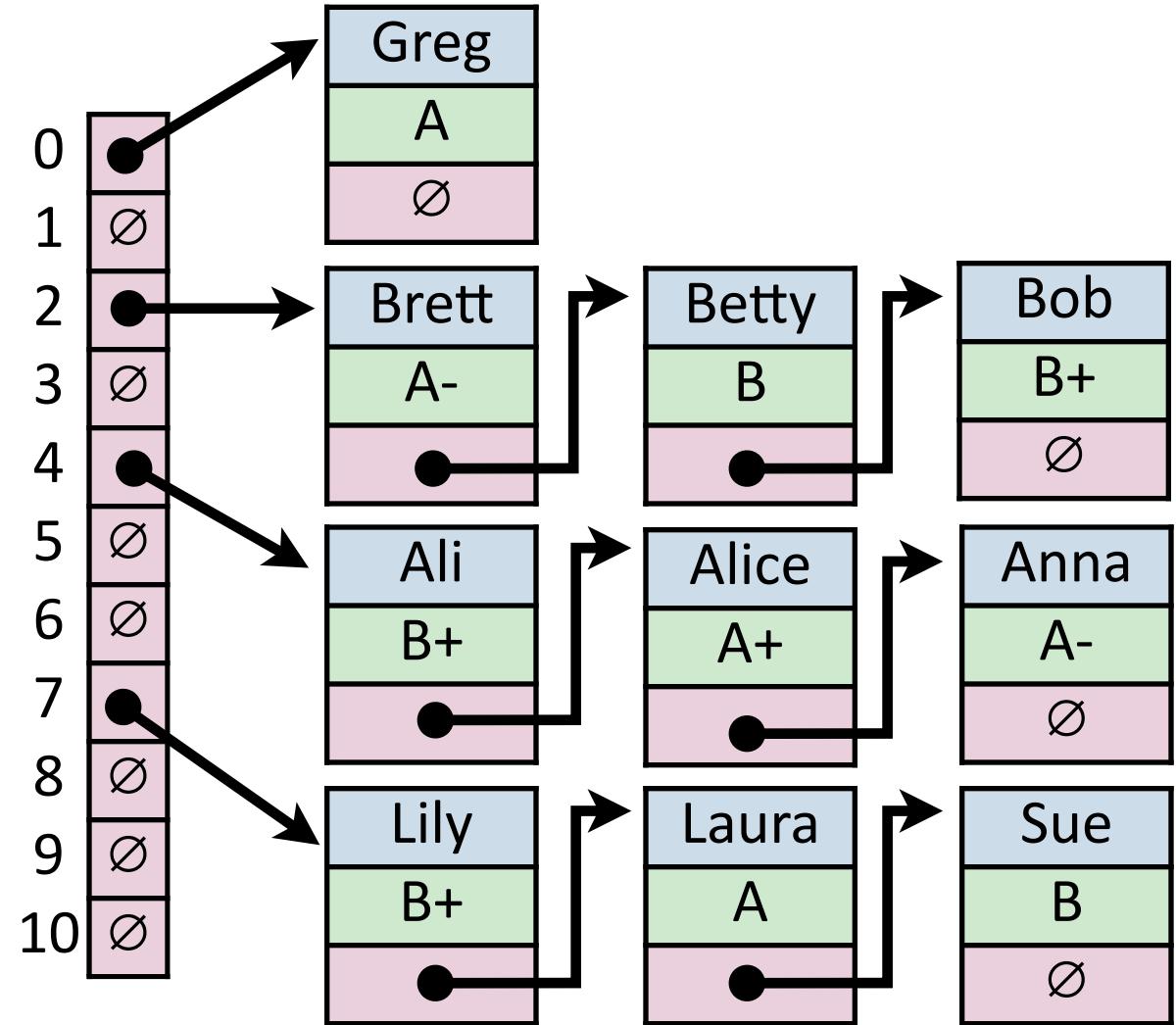


- **Closed Hashing:** store k, v pairs in the hash table



Hash Table (Separate Chaining)

Key	Value	Hash
Bob	B+	2
Anna	A-	4
Alice	A+	4
Betty	B	2
Brett	A-	2
Greg	A	0
Sue	B	7
Ali	B+	4
Laura	A	7
Lily	B+	7



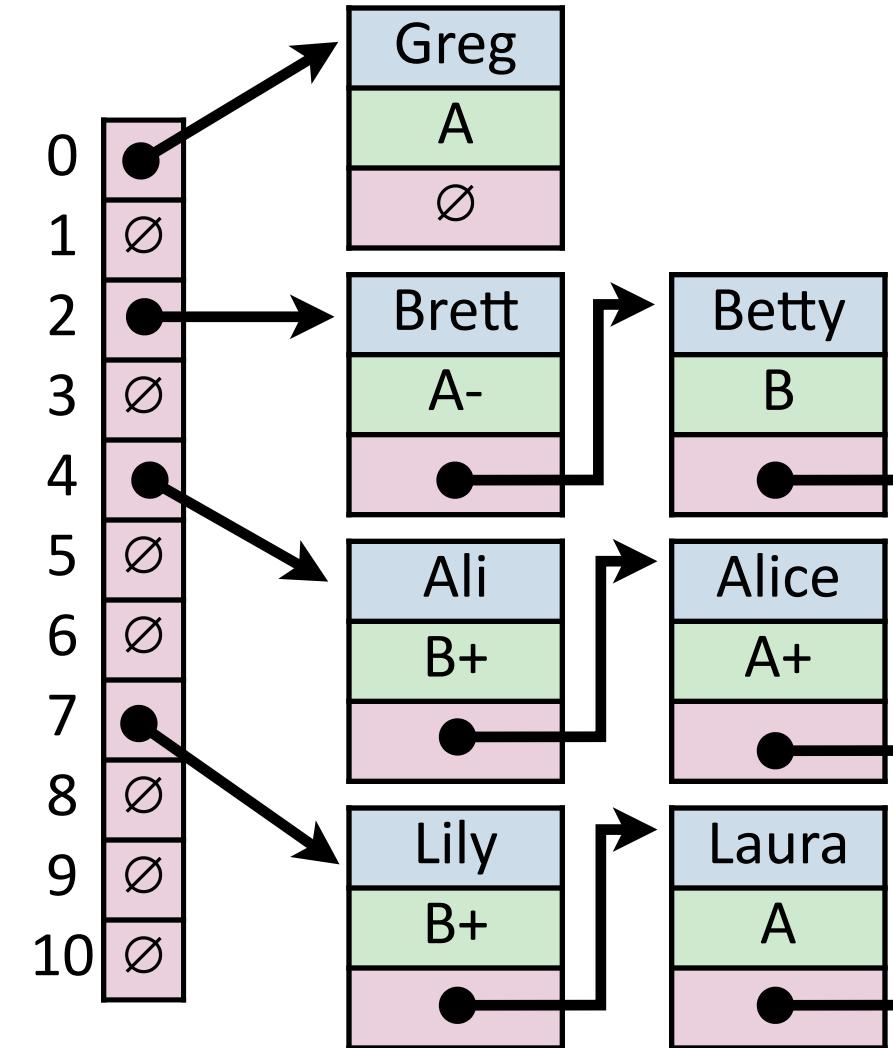
Hash Table (Separate Chaining)

For hash table of size m and n elements:

Find runs in: _____

Insert runs in: _____

Remove runs in: _____



Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h , our hash, and assume it is good for *all keys*:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

2) Create a *universal hash function family*:

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Simple Uniform Hashing Assumption

Given table of size m , a simple uniform hash, h , implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform:

Independent:

Simple Uniform Hashing Assumption

Given table of size m , a simple uniform hash, h , implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform: All keys equally likely to hash to any position

$$\Pr(h[k_1]) = \frac{1}{m}$$

Independent: All key's hash values are independent of other keys

Separate Chaining Under SUHA

Table Size: m

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

Num objects: n

α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 & \text{if item } i \text{ hashes to } j \\ 0 & \text{otherwise} \end{cases}$$

Separate Chaining Under SUHA

Table Size: m

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

Num objects: n

α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 & \text{if item } i \text{ hashes to } j \\ 0 & \text{otherwise} \end{cases}$$

$$E[\alpha_j] = E\left[\sum_i H_{i,j}\right]$$

Separate Chaining Under SUHA

Table Size: m
Num objects: n

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 & \text{if item } i \text{ hashes to } j \\ 0 & \text{otherwise} \end{cases}$$

$$E[\alpha_j] = E\left[\sum_i H_{i,j}\right]$$

$$E[\alpha_j] = \sum_i \Pr(H_{i,j} = 1) * 1 + \Pr(H_{i,j} = 0) * 0$$

Separate Chaining Under SUHA

Table Size: m
Num objects: n

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 & \text{if item } i \text{ hashes to } j \\ 0 & \text{otherwise} \end{cases}$$

$$E[\alpha_j] = E\left[\sum_i H_{i,j} \right]$$

$$E[\alpha_j] = \sum_i Pr(H_{i,j} = 1) * 1 + Pr(H_{i,j} = 0) * 0$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

Separate Chaining Under SUHA

Table Size: m

Num objects: n

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 & \text{if item } i \text{ hashes to } j \\ 0 & \text{otherwise} \end{cases}$$

$$E[\alpha_j] = E\left[\sum_i H_{i,j}\right]$$

$$Pr[H_{i,j} = 1] = \frac{1}{m}$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

Separate Chaining Under SUHA

Claim: Under SUHA, expected length of chain is $\frac{n}{m}$

α_j = expected # of items hashing to position j

$$\alpha_j = \sum_i H_{i,j}$$

$$H_{i,j} = \begin{cases} 1 & \text{if item } i \text{ hashes to } j \\ 0 & \text{otherwise} \end{cases}$$

$$E[\alpha_j] = E\left[\sum_i H_{i,j}\right]$$

$$Pr[H_{i,j} = 1] = \frac{1}{m}$$

$$E[\alpha_j] = n * Pr(H_{i,j} = 1)$$

$$E[\alpha_j] = \frac{n}{m}$$

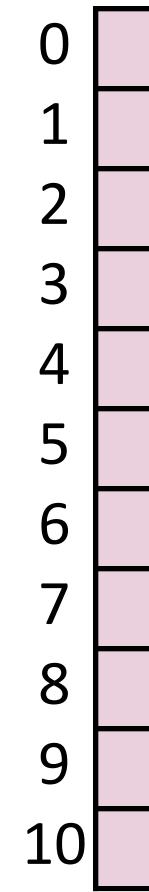
Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: _____.

Insert runs in: _____.

Remove runs in: _____.



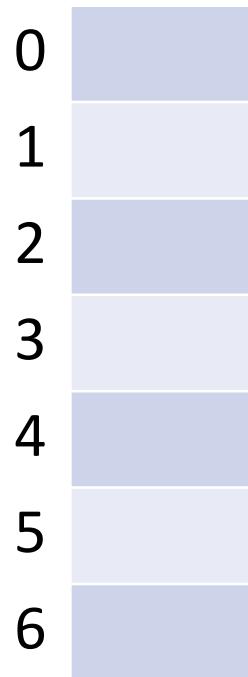
Collision Handling: Probe-based Hashing

$$S = \{ 1, 8, 15 \}$$

$$h(k) = k \% 7$$

$$|S| = n$$

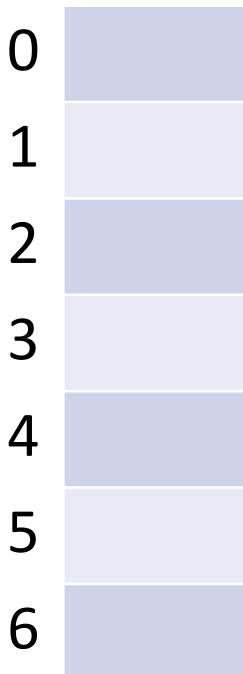
$$|\text{Array}| = m$$



Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n$$

$$h(k) = k \% 7 \quad |\text{Array}| = m$$



$$h(k, i) = (k + i) \% 7$$

Try $h(k) = (k + 0) \% 7$, if full...

Try $h(k) = (k + 1) \% 7$, if full...

Try $h(k) = (k + 2) \% 7$, if full...

Try ...

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n$$

$$h(k, i) = (k + i) \% 7 \quad |\text{Array}| = m$$

0	22
1	8
2	16
3	29
4	4
5	11
6	13

`_find(29)`

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n$$

$$h(k, i) = (k + i) \% 7 \quad |\text{Array}| = m$$

0	22
1	8
2	16
3	29
4	4
5	11
6	13

— remove (16)

A Problem w/ Linear Probing

Primary Clustering:

0	
1	1_1
2	1_2
3	3_1
4	1_3
5	3_2
6	
7	
8	
9	

Description:

Remedy:

Collision Handling: Quadratic Probing

$$S = \{ 16, 8, 4, 13, 29, 12, 22 \}$$

$$|S| = n$$

$$h(k) = k \% 7$$

$$|\text{Array}| = m$$

0	
1	8
2	16
3	
4	4
5	
6	13

$$h(k, i) = (k + i*i) \% 7$$

Try $h(k) = (k + 0) \% 7$, if full...

Try $h(k) = (k + 1*1) \% 7$, if full...

Try $h(k) = (k + 2*2) \% 7$, if full...

Try ...

A Problem w/ Quadratic Probing

Secondary Clustering:

0	0₁
1	0₂
2	
3	
4	0₃
5	
6	
7	
8	
9	0₄

Description:

Remedy:

Collision Handling: Double Hashing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$

$$|S| = n$$

$$h_1(k) = k \% 7$$

$$|\text{Array}| = m$$

$$h_2(k) = 5 - (k \% 5)$$

0	
1	8
2	16
3	
4	4
5	
6	13

$$h(k, i) = (h_1(k) + i * h_2(k)) \% 7$$

Try $h(k) = (k + 0 * h_2(k)) \% 7$, if full...

Try $h(k) = (k + 1 * h_2(k)) \% 7$, if full...

Try $h(k) = (k + 2 * h_2(k)) \% 7$, if full...

Try ...

Running Times

(Expectation under SUHA)

(Don't memorize these equations, no need.)

Open Hashing:

insert: _____.

find/ remove: _____.

Closed Hashing:

insert: _____.

find/ remove: _____.

Running Times *(Don't memorize these equations, no need.)*

The expected number of probes for find(key) under SUHA

Linear Probing:

- Successful: $\frac{1}{2}(1 + 1/(1-\alpha))$
- Unsuccessful: $\frac{1}{2}(1 + 1/(1-\alpha))^2$

Instead, observe:

- As α increases:

Double Hashing:

- Successful: $1/\alpha * \ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

- If α is constant:

Separate Chaining:

- Successful: $1 + \alpha/2$
- Unsuccessful: $1 + \alpha$

Running Times

The expected number of probes for $\text{find}(\text{key})$ under SUHA

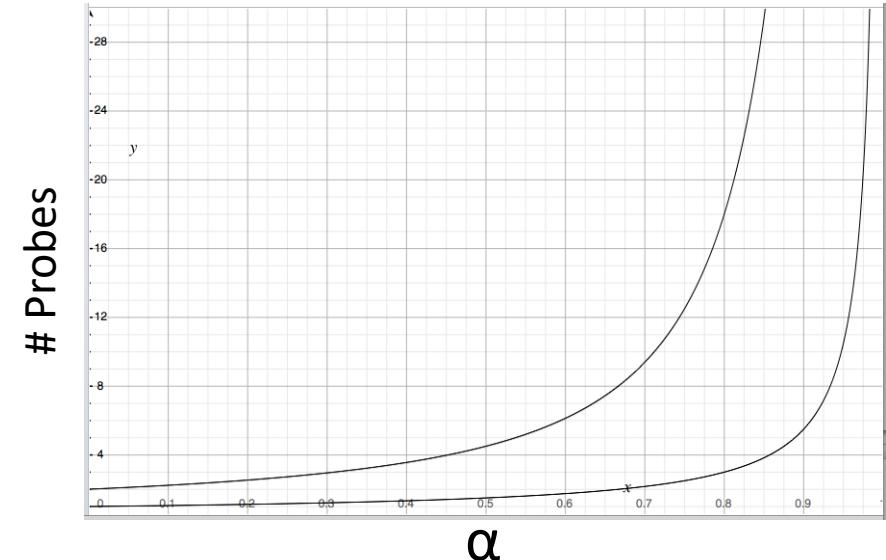
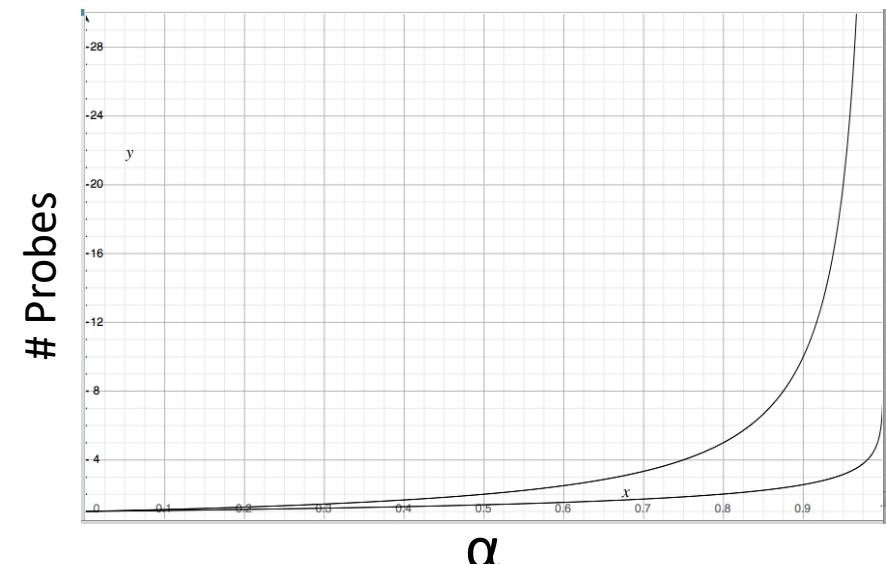
Linear Probing:

- Successful: $\frac{1}{2}(1 + 1/(1-\alpha))$
- Unsuccessful: $\frac{1}{2}(1 + 1/(1-\alpha))^2$

Double Hashing:

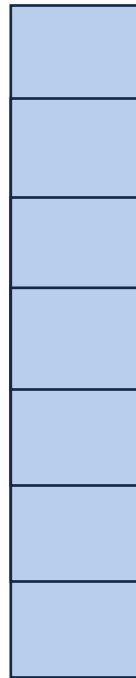
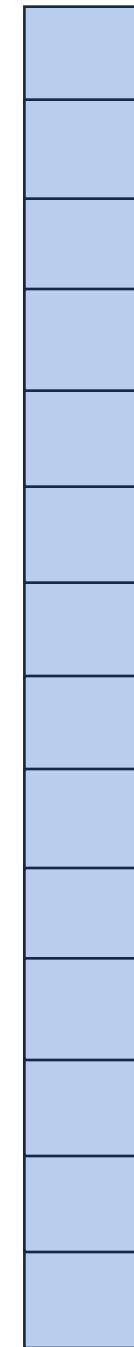
- Successful: $1/\alpha * \ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

When do we resize?



Resizing a hash table

How do you resize?



Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

Running Times

	Hash Table	AVL	Linked List
Find	Expectation*: Worst Case:		
Insert	Expectation*: Worst Case:		
Storage Space			