Data Structures and Algorithms

Hashing 3

CS 225 November 17, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review hash table implementations

Improve our closed hash implementation
Determine when and how to resize a hash table

Justify when to use different index approaches

Simple Uniform Hashing Assumption

Given table of size m, a simple uniform hash, &, implies

1
Vkl,kz & UWhere kl # k2) Pl’(h[kl] — h[kz]) — —
m

Uniform: All keys equally likely to hash to any position

|
Pr(hlk]) = —

m

Independent: All key’s hash values are independent of other keys

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

e Open Hashing: store k,v pairs externally

“ Ali Alice Anna
Q.\k B+ A+ A-
%,

Closed Hashing: store k,v pairs in the hash table

e P W INPEFL O

Anna, A-

Separate Chaining Under SUHA @

Under SUHA, a hash table of size m and n elements:

Find runs in: O(1+a).

Insert runs in: O(1).

Remove runs in: O(1+a).

OO0 NOOUL B WN K- O

[ERY
o

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,8,4,13,29,11, 22} |S| =n
h(k) =k % 7 |Array| =m
0 22 h(k,i)=(k+i) % 7
1 8 Try h(k) = (k + 0) % 7, if full...
2 16
3 29
4 4
5 11
6 13

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,38,64,13,29,6 11,22} |S| =n
h(k,i)=(k+1i) % 7 |Array| = m
find (29)

0 22 -

1 8 1) Hash the input key [h(29)=1]

2 16 2) Look at hash value (address) position

3 29 If present, return (k, v)

4 4 If not look at next available space

> I Stop when:

6 13

1) We find the object we are looking for

2) We have searched every position in the array
3) We find a blank space

(Example of closed hashing)

Collision Handling: Linear Probing

S={16,38,64,13,29,6 11,22} |S| =n
h(k,i)=(k+1i) % 7 |Array| = m
remove (16)
0 22 —
1 8 1) Hash the input key [h(16)=2]
2 16 2) Find the actual location (if it exists)
3 29 3) Remove the (k,v) at hash value (address)
4 4 Don't resize the array! Tombstone!
5 11
6 13

A Problem w/ Linear Probing @

Primary Clustering: “Rich get richer”

Description:

1 Collisions create long runs of filled-in indices

1, Should have a 1/m chance to hash anywhere

31 Instead have a (size of cluster) / m chance to hash at end

Remedy:

O 00 N O O o W N — O
W
N

A Problem w/ Linear Probing @

Primary Clustering: “Rich get richer”

Description:

1 Collisions create long runs of filled-in indices

1, Should have a 1/m chance to hash anywhere

31 Instead have a (size of cluster) / m chance to hash at end

Remedy:
Pick a better “next available” position!

O 00 N O O o W N — O
W
N

(Example of closed hashing)

Collision Handling: Quadratic Probing

S={16,8,4,13,29,12,22} IS| = n
h(k) =k % 7 |Array| = m
0 h(k, i) = (k +i*i) % 7
18 Try h(k) = (k + 0) % 7, if full...
2 16
3
4 4
5
6 13

A Problem w/ Quadratic Probing

Secondary Clustering:

01 Description:

0
’ Individual collisions still yield long chains

Remedy:

Be less consistent (but still deterministic)

O 00 N O O o W N — O

04

(Example of closed hashing)

Collision Handling: Double Hashing
S={16,38,4,13,29, 11,22} IS| =n
hi(k) =k % 7

|Array| = m
ha(k) =5 - (k % 5)

h(k, i) = (h,(k) + i*h,(K)) % 7
Try h(k) = (k + 0*h,(k)) % 7, if full...

16

o Ul b W N R O

13

Runnin g Times (Understand why we have these rough forms)
(Expectation under SUHA)

Open Hashing:

insert:

find/ remove:

Closed Hashing:

insert:

find/ remove:

Running Times (Expectation under SUHA) @

Open Hashing: () <o < o

insert: 1 . Observe:
- As a increases:

find/ remove: 1 +a

Closed Hashing: 0 <a < 1
1 - If o is constant:

insert:]l —a
1

find/ remove: 1| —a

Run ning Times (Don’t memorize these equations, no need.)
The expected number of probes for find(key) under SUHA

Linear Probing:
o Successful: %(1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))2

Probes

Double Hashing:
o Successful: 1/a * In(1/(1-a))
e Unsuccessful: 1/(1-a)

Probes

When do we resize?

Resizing a hash table
How do you resize?

Which collision resolution strategy is better? @
e Big Records:

e Structure Speed:

What structure do hash tables implement?
What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

std::map in C++

T& map<K, V>::operator|]
pair<iterator, bool> map<K, V>::insert()

iterator map<K, V>::.:erase()

iterator map<K, V>::lower bound(const K &);

iterator map<K, V>::upper bound(const K &);

std::unordered_map in C++
T& unordered map<K, V>::operator[]

pair<iterator, bool> unordered map<K, V>::insert()

iterator unordered map<K, V>::erase()

float unordered map<K, V>::load factor();

void unordered map<K, V>::max load factor(float m);

Running Times @

Expectation™:

Find

Worst Case:

Expectation™:

Insert
Worst Case:

Storage Space

Next Class: Probabilistic Accuracy in Data Structures

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Probabilistic Accuracy: Fermat primality test
Pickarandom a intherange [2, p — 2]

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and ¢! = 1 (mod n)

Probabilistic Accuracy: Fermat primality test ?'ﬁ:'ﬁ

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness: The choice of a.

We can even pick more than one « if we want!

Assumptions: Only that random numbers are actually random

While strictly not true, generally an acceptable assumption in practice

Types of randomized algorithms ?'ﬁﬁ

A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

What type of algorithm is Fermat’s primality test?

What type of algorithm is randomized quick sort?

Bonus Slides

Hash Table

Worst-Case behavior is bad — but what about randomness?
1) Fix h, our hash, and assume it is good for all keys:

Simple Uniform Hashing Assumption
(Assume our dataset hashes optimally)

2) Create a universal hash function family:
Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Hash Function (Division Method)
Hash of form: h(k) = k %o m

Pro:

Con:

Hash Function (Mid-Square Method)
Hash of form: h(k) = (k * k) and take b bits from middle (m = 2%)

Hash Function (Mid-Square Method)

Hash of form: h(k) = (k * k) and take b bits from middle (m = 2%)

Hash Function (Multiplication Method)
Hash of form: h(k) = |[m(kA% 1)|, 0 <A <L 1

Pro:

Con:

Hash Function (Universal Hash Family)

Hash of form: &, (k) = ((ak + b) %p) Yom, a,b € 5,7,
1
Vi) #F ky, Pryp(hgplki] = hyplks]) < .

Pro:

Con:

