

Data Structures and Algorithms

Hashing 3

CS 225
Brad Solomon

November 17, 2025

Department of Computer Science

Learning Objectives

Review hash table implementations

Improve our closed hash implementation

Determine when and how to resize a hash table

Justify when to use different index approaches

Simple Uniform Hashing Assumption

Given table of size m , a simple uniform hash, h , implies

$$\forall k_1, k_2 \in U \text{ where } k_1 \neq k_2, \Pr(h[k_1] = h[k_2]) = \frac{1}{m}$$

Uniform: All keys equally likely to hash to any position

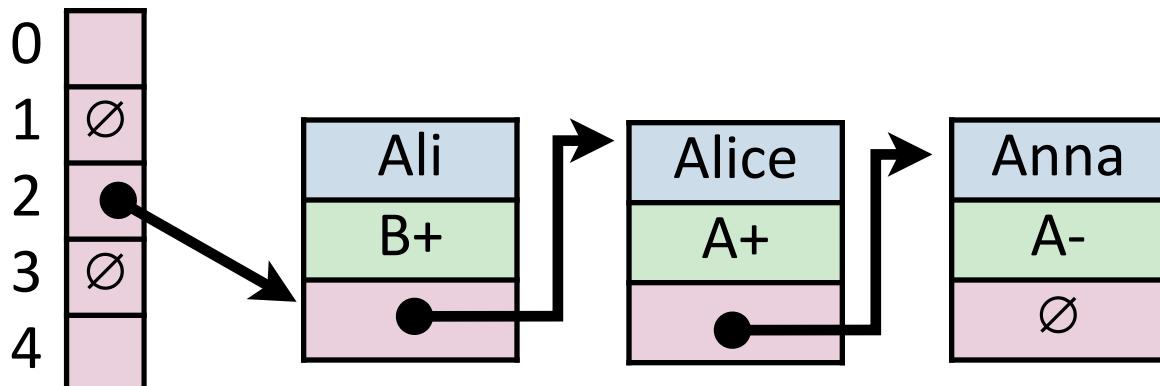
$$\Pr(h[k_1]) = \frac{1}{m}$$

Independent: All key's hash values are independent of other keys

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

- **Open Hashing:** store k, v pairs externally



- **Closed Hashing:** store k, v pairs in the hash table

0	Anna, A-
1	
2	Ali, B+
3	Alice, A+

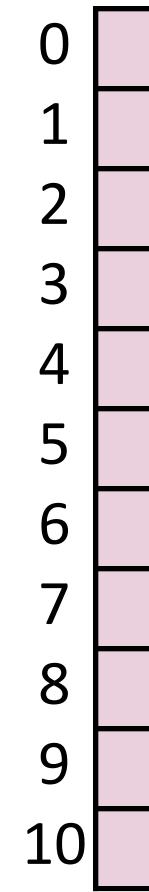
Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: $O(1+\alpha)$.

Insert runs in: $O(1)$.

Remove runs in: $O(1+\alpha)$.



Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n$$

$$h(k) = k \% 7 \quad |\text{Array}| = m$$

0	22
1	8
2	16
3	29
4	4
5	11
6	13

$$h(k, i) = (k + i) \% 7$$

Try $h(k) = (k + 0) \% 7$, if full...

Try $h(k) = (k + 1) \% 7$, if full...

Try $h(k) = (k + 2) \% 7$, if full...

Try ...

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n$$

$$h(k, i) = (k + i) \% 7 \quad |\text{Array}| = m$$

0	22
1	8
2	16
3	29
4	4
5	11
6	13

find(29)

- 1) Hash the input key [$h(29)=1$]
- 2) Look at hash value (address) position
If present, return (k, v)
If not look at **next available space**

Stop when:

- 1) We find the object we are looking for
- 2) We have searched every position in the array
- 3) We find a blank space

Collision Handling: Linear Probing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n$$

$$h(k, i) = (k + i) \% 7 \quad |\text{Array}| = m$$

0	22
1	8
2	16
3	29
4	4
5	11
6	13

remove (16)

- 1) Hash the input key [$h(16)=2$]
- 2) Find the actual location (if it exists)
- 3) Remove the (k, v) at hash value (address)

Don't resize the array! Tombstone!

A Problem w/ Linear Probing

Primary Clustering: “Rich get richer”

0	
1	1_1
2	1_2
3	3_1
4	1_3
5	3_2
6	
7	
8	
9	

Description:

Collisions create long runs of filled-in indices

Should have a $1/m$ chance to hash anywhere

Instead have a **(size of cluster) / m** chance to hash at end

Remedy:

A Problem w/ Linear Probing

Primary Clustering: “Rich get richer”

0	
1	1_1
2	1_2
3	3_1
4	1_3
5	3_2
6	
7	
8	
9	

Description:

Collisions create long runs of filled-in indices

Should have a $1/m$ chance to hash anywhere

Instead have a **(size of cluster) / m** chance to hash at end

Remedy:

Pick a better “next available” position!

Collision Handling: Quadratic Probing

$$S = \{ 16, 8, 4, 13, 29, 12, 22 \}$$

$$|S| = n$$

$$h(k) = k \% 7$$

$$|\text{Array}| = m$$

0	
1	8
2	16
3	
4	4
5	
6	13

$$h(k, i) = (k + i*i) \% 7$$

Try $h(k) = (k + 0) \% 7$, if full...

Try $h(k) = (k + 1*1) \% 7$, if full...

Try $h(k) = (k + 2*2) \% 7$, if full...

Try ...

A Problem w/ Quadratic Probing

Secondary Clustering:

0	0₁
1	0₂
2	
3	
4	0₃
5	
6	
7	
8	
9	0₄

Description:

Individual collisions still yield long chains

Remedy:

Be less consistent (but still deterministic)

Collision Handling: Double Hashing

$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$$

$$|S| = n$$

$$h_1(k) = k \% 7$$

$$|\text{Array}| = m$$

$$h_2(k) = 5 - (k \% 5)$$

0	
1	8
2	16
3	
4	4
5	
6	13

$$h(k, i) = (h_1(k) + i * h_2(k)) \% 7$$

Try $h(k) = (k + 0 * h_2(k)) \% 7$, if full...

Try $h(k) = (k + 1 * h_2(k)) \% 7$, if full...

Try $h(k) = (k + 2 * h_2(k)) \% 7$, if full...

Try ...

Running Times

(Expectation under SUHA)

(Understand why we have these rough forms)

Open Hashing:

insert: _____.

find/ remove: _____.

Closed Hashing:

insert: _____.

find/ remove: _____.

Running Times (Expectation under SUHA)

Open Hashing: $0 \leq \alpha \leq \infty$

insert: $\frac{1}{1 + \alpha}$.

find/ remove: $\frac{1 + \alpha}{1 + \alpha}$.

Closed Hashing: $0 \leq \alpha < 1$

insert: $\frac{1}{1 - \alpha}$.

find/ remove: $\frac{1}{1 - \alpha}$.

Observe:

- As α increases:

- If α is constant:

Running Times *(Don't memorize these equations, no need.)*

The expected number of probes for find(key) under SUHA

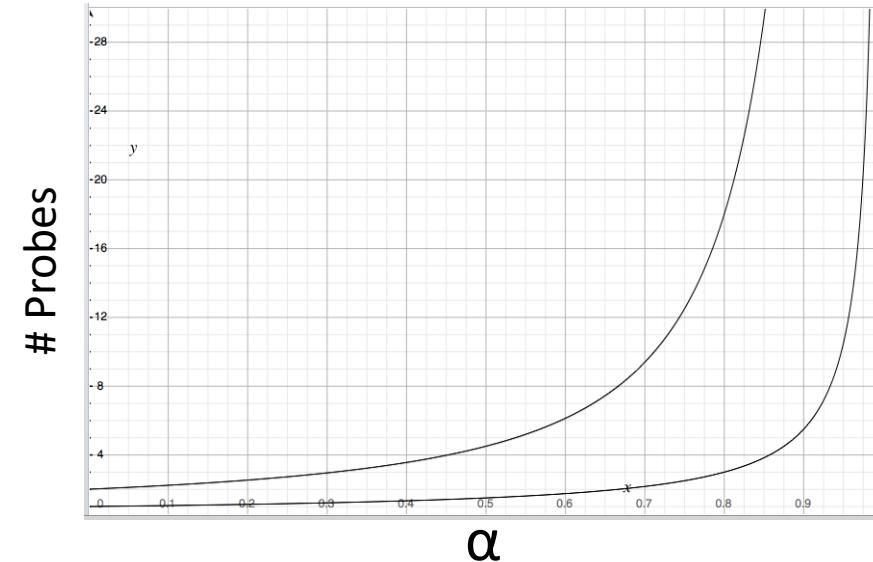
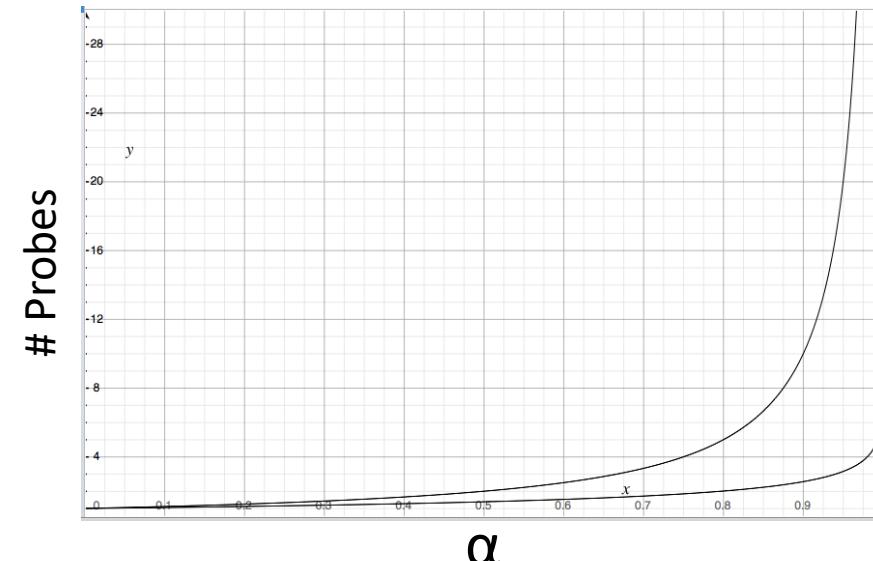
Linear Probing:

- Successful: $\frac{1}{2}(1 + 1/(1-\alpha))$
- Unsuccessful: $\frac{1}{2}(1 + 1/(1-\alpha))^2$

Double Hashing:

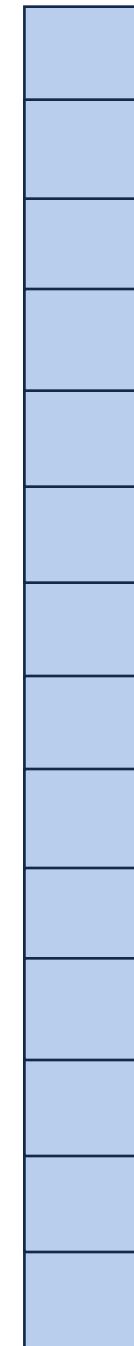
- Successful: $1/\alpha * \ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

When do we resize?



Resizing a hash table

How do you resize?



Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

std::map in C++

```
T& map<K, V>::operator[]  
pair<iterator, bool> map<K, V>::insert()  
iterator map<K, V>::erase()
```

```
iterator map<K, V>::lower_bound( const K & );  
iterator map<K, V>::upper_bound( const K & );
```

std::unordered_map in C++

```
T& unordered_map<K, V>::operator[]  
pair<iterator, bool> unordered_map<K, V>::insert()  
iterator unordered_map<K, V>::erase()
```

~~```
iterator map<K, V>::lower_bound(const K &);
iterator map<K, V>::upper_bound(const K &);
```~~  
~~```
float unordered_map<K, V>::load_factor();  
void unordered_map<K, V>::max_load_factor(float m);
```~~

Running Times

| | Hash Table | AVL | Linked List |
|---------------|----------------------------------|-----|-------------|
| Find | Expectation*:

Worst Case: | | |
| Insert | Expectation*:

Worst Case: | | |
| Storage Space | | | |

Next Class: Probabilistic Accuracy in Data Structures

1. Assume input data is random to estimate average-case performance
2. Use randomness inside algorithm to estimate expected running time
- 3. Use randomness inside algorithm to approximate solution in fixed time**

Probabilistic Accuracy: Fermat primality test

Pick a random a in the range $[2, p - 2]$

If p is prime and a is not divisible by p , then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if n is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test



Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

| | $a^{p-1} \equiv 1 \pmod{p}$ | $a^{p-1} \not\equiv 1 \pmod{p}$ |
|------------------|-----------------------------|---------------------------------|
| p is prime | | |
| p is not prime | | |

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness: The choice of α .

We can even pick more than one α if we want!

Assumptions: Only that random numbers are actually random

While strictly not true, generally an acceptable assumption in practice

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

What type of algorithm is Fermat's primality test?

What type of algorithm is randomized quick sort?

Bonus Slides

Hash Table

Worst-Case behavior is bad — but what about randomness?

1) Fix h , our hash, and assume it is good for *all keys*:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

2) Create a *universal hash function family*:

Given a collection of hash functions, pick one randomly

Like **random quicksort** if pick of hash is random, good expectation!

Hash Function (Division Method)

Hash of form: $h(k) = k \% m$

Pro:

Con:

Hash Function (Mid-Square Method)

Hash of form: $h(k) = (k * k)$ and take b bits from middle ($m = 2^b$)

Hash Function (Mid-Square Method)

Hash of form: $h(k) = (k * k)$ and take b bits from middle ($m = 2^b$)

Hash Function (Multiplication Method)

Hash of form: $h(k) = \lfloor m(kA \% 1) \rfloor$, $0 \leq A \leq 1$

Pro:

Con:

Hash Function (Universal Hash Family)

Hash of form: $h_{ab}(k) = ((ak + b) \% p) \% m, a, b \in Z_p^*, Z_p$

$$\forall k_1 \neq k_2, \Pr_{a,b}(h_{ab}[k_1] = h_{ab}[k_2]) \leq \frac{1}{m}$$

Pro:

Con: