
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 17, 2025

Hashing 3

Learning Objectives

Improve our closed hash implementation

Determine when and how to resize a hash table

Review hash table implementations

Justify when to use different index approaches

Simple Uniform Hashing Assumption
Given table of size , a simple uniform hash, , implies

 where ,

m h

∀k1, k2 ∈ U k1 ≠ k2 Pr(h[k1] = h[k2]) =
1
m

Uniform: All keys equally likely to hash to any position

Independent: All key’s hash values are independent of other keys

Pr(h[k1]) =
1
m

Open vs Closed Hashing

• Open Hashing: store k,v pairs externally

• Closed Hashing: store k,v pairs in the hash table

Addressing hash collisions depends on your storage structure.

0
1 ∅
2
3 ∅
4

Ali
B+

Alice
A+

Anna
A-
∅

0 Anna, A-
1
2 Ali, B+
3 Alice, A+

Separate Chaining Under SUHA

Under SUHA, a hash table of size m and n elements:

Find runs in: O(1+).α

Insert runs in: O(1).

Remove runs in: O(1+).α

0
1
2
3
4
5
6
7
8
9

10

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (k + i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1) % 7, if full…
Try h(k) = (k + 2) % 7, if full…
Try …

0 22

1 8

2 16

3 29

4 4

5 11

6 13

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

_find(29)

1) Hash the input key [h(29)=1]

2) Look at hash value (address) position
If present, return (k, v)
If not look at next available space

Stop when:
1) We find the object we are looking for
2) We have searched every position in the array
3) We find a blank space

0 22

1 8

2 16

3 29

4 4

5 11

6 13

Collision Handling: Linear Probing
(Example of closed hashing)

|S| = n
|Array| = mh(k, i) = (k + i) % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

0 22

1 8

2 16

3 29

4 4

5 11

6 13

_remove(16)

1) Hash the input key [h(16)=2]

3) Remove the (k,v) at hash value (address)

Don’t resize the array! Tombstone!

2) Find the actual location (if it exists)

A Problem w/ Linear Probing

0
1 11

2 12

3 31

4 13

5 32

6
7
8
9

Primary Clustering: “Rich get richer”

Description:

Remedy:

Collisions create long runs of filled-in indices
Should have a 1/m chance to hash anywhere
Instead have a (size of cluster) / m chance to hash at end

A Problem w/ Linear Probing

0
1 11

2 12

3 31

4 13

5 32

6
7
8
9

Primary Clustering: “Rich get richer”

Description:

Remedy:

Collisions create long runs of filled-in indices
Should have a 1/m chance to hash anywhere
Instead have a (size of cluster) / m chance to hash at end

Pick a better “next available” position!

Collision Handling: Quadratic Probing
(Example of closed hashing)

h(k) = k % 7
S = { 16, 8, 4, 13, 29, 12, 22 }

h(k, i) = (k + i*i) % 7
Try h(k) = (k + 0) % 7, if full…
Try h(k) = (k + 1*1) % 7, if full…
Try h(k) = (k + 2*2) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

|S| = n
|Array| = m

A Problem w/ Quadratic Probing

0 01

1 02

2
3
4 03

5
6
7
8
9 04

Secondary Clustering:

Description:

Remedy:

Individual collisions still yield long chains

Be less consistent (but still deterministic)

Collision Handling: Double Hashing
(Example of closed hashing)

|S| = n
|Array| = mh1(k) = k % 7

S = { 16, 8, 4, 13, 29, 11, 22 }

h(k, i) = (h1(k) + i*h2(k)) % 7
Try h(k) = (k + 0*h2(k)) % 7, if full…
Try h(k) = (k + 1*h2(k)) % 7, if full…
Try h(k) = (k + 2*h2(k)) % 7, if full…
Try …

0
1 8
2 16
3
4 4
5
6 13

h2(k) = 5 - (k % 5)

Running Times
Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

(Understand why we have these rough forms)
(Expectation under SUHA)

find/ remove: __________.

Running Times (Expectation under SUHA)
Open Hashing:

Closed Hashing:

insert: __________.

find/ remove: __________.

insert: __________.

find/ remove: __________.

0 ≤ α ≤ ∞

0 ≤ α < 1

1 + α

1

1
1 − α

1
1 − α

Observe:

- As α increases:

- If α is constant:

Running Times
Linear Probing:

• Successful: ½(1 + 1/(1-α))

• Unsuccessful: ½(1 + 1/(1-α))2

Double Hashing:

• Successful: 1/α * ln(1/(1-α))

• Unsuccessful: 1/(1-α)

When do we resize?

The expected number of probes for find(key) under SUHA

Pr

ob
es

Pr

ob
es

α

α

(Don’t memorize these equations, no need.)

Resizing a hash table
How do you resize?

Which collision resolution strategy is better?

•	 Big Records:

•	 Structure Speed:

What structure do hash tables implement?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?

std::map in C++

iterator map<K, V>::lower_bound(const K &);

iterator map<K, V>::upper_bound(const K &);

T& map<K, V>::operator[]
pair<iterator, bool> map<K, V>::insert()
iterator map<K, V>::erase()

std::unordered_map in C++

iterator map<K, V>::lower_bound(const K &);

iterator map<K, V>::upper_bound(const K &);

T& unordered_map<K, V>::operator[]
pair<iterator, bool> unordered_map<K, V>::insert()
iterator unordered_map<K, V>::erase()

float unordered_map<K, V>::load_factor();

void unordered_map<K, V>::max_load_factor(float m);

Running Times
Hash Table AVL Linked List

Find

Expectation*:

Worst Case:

Insert

Expectation*:

Worst Case:

Storage Space

Next Class: Probabilistic Accuracy in Data Structures

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Probabilistic Accuracy: Fermat primality test

If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Pick a random in the range a [2, p − 2]

Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial: and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial: and prime test returns ‘prime!’ a = a1

Third trial: and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep

Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness: The choice of . α

Assumptions: Only that random numbers are actually random

We can even pick more than one if we want!α

While strictly not true, generally an acceptable assumption in practice

Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

What type of algorithm is Fermat’s primality test?

What type of algorithm is randomized quick sort?

Bonus Slides

Worst-Case behavior is bad — but what about randomness?

Hash Table

1) Fix h, our hash, and assume it is good for all keys:

2) Create a universal hash function family:

Simple Uniform Hashing Assumption

(Assume our dataset hashes optimally)

Given a collection of hash functions, pick one randomly

Like random quicksort if pick of hash is random, good expectation!

Hash Function (Division Method)
Hash of form: h(k) = k % m

Pro:

Con:

Hash Function (Mid-Square Method)
Hash of form: and take bits from middle h(k) = (k * k) b (m = 2b)

Hash Function (Mid-Square Method)
Hash of form: and take bits from middle h(k) = (k * k) b (m = 2b)

Hash Function (Multiplication Method)
Hash of form: , h(k) = ⌊m(kA % 1)⌋ 0 ≤ A ≤ 1

Pro:

Con:

Hash Function (Universal Hash Family)
Hash of form: , hab(k) = ((ak + b) % p) % m a, b ∈ Z*p , Zp

, ∀k1 ≠ k2 Pra,b(hab[k1] = hab[k2]) ≤
1
m

Pro:

Con:

