Data Structures and Algorithms

Bloom Filters

CS 225 November 19, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science



Learning Objectives

Review when you would prefer different data structures

Build a conceptual understanding of a bloom filter
Review probabilistic data structures and one-sided error

Formalize the math behind the bloom filter




Running Times

o

Expectation™®: O(1)***

Find O(log n) O(n)
Worst Case: O(n)

Expectation®: O(1)***

Insert O(log n) 0O(1)
Worst Case: O(n)

Storage Space O(n) O(n) O(n)



Memory-Constrained Data Structures

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Constrained by Big Data (Large NN)

cat photos § Q

Q Al () Images [E News [*] Videos [ Books ¢ More Settings  Tools

About 4,850,000,000 results (0.49 secon ds)

Images for cat

y O
- itten

4 ""‘\; wallpaper %+ white

Google Index Estimate: >60 billion webpages

Google Universe Estimate (2013): >130 trillion webpages




Memory-Constrained Data Structures

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Constrained by Big Data (Large NN)

S

“SAAENA TS

1000 Genomes Project
European Nucleotide Archive e

| Sequence Read Archive (SRA) makes biological sequence data available to the research community to enhance reproducibility
and allow for new discoveries by comparing data sets. The SRA stores raw sequencing data and alignment information from
high-throughput sequencing platforms, including Roche 454 GS System®, lllumina Genome Analyzer®, Applied Biosystems

SOLID System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.

Sequence Read Archive Size: >60 petabases (107>)



Memory-Constrained Data Structures

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Constrained by Big Data (Large NN)

Sky Survey Projects Data Volume
DPOSS (The Palomar Digital Sky Survey) 3TB
2MASS (The Two Micron All-Sky Survey) 10TB
GBT (Green Bank Telescope) 20 PB
GALEX (The Galaxy Evolution Explorer ) 30TB

o SDSS (The Sloan Digital Sky Survey) 40 TB
SkyMapper Southern Sky Survey 500 TB
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)  ~ 40 PB expected
LSST (The Large Synoptic Survey Telescope) ~ 200 PB expected
SKA (The Square Kilometer Array) ~ 4.6 EB expected

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB

Image: https://doi.org/10.1038/nature03597



http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Constrained by resource limitations

cache < 1 second

RAM Hours - Days

disk Months

network Vears

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)


https://gist.github.com/hellerbarde/2843375

Memory-Constrained Data Structures @

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?




Reducing storage costs

1) Throw out information that isn't needed

2) Compress the dataset




Reducing a hash table

What can we remove from a

hash table?




Reducing a hash table

What can we remove from a [ S N A
hash table?

—> k4/v ks
Take away values m .




Reducing a hash table

What can we remove from a -
hash table?

Take away values and keys m




Reducing a hash table

What can we remove from a T
hash table?
Take away values and keys m

This is a bloom filter

O OO 000000 —~00 —= 0O 0o o oo




Bloom Filter ADT

Constructor

Insert

Find




Bloom Filter: Insertion

$={16,8,4,13,29,11,22}
h(k)=k % 7

o b~ W N L O
O O O O O O O




Bloom Filter: Insertion

An item is inserted into a bloom filter by hashing
and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

H(x,)

H(x,)

H(x3)
H(x,)

O -0 - 0 0O -—= O O



Bloom Filter: Deletion

$S={16,8,4,13,29,11,22} _delete(13)
h(k) =k % 7

_delete (29)

o A W N R O
m O L O Fr L O




Bloom Filter: Deletion

Due to hash collisions and lack of information,
items cannot be deleted!

H(x;)

H(x,)

H(x3)
H (X4)

O Ol —m 0ooO0 ©0 o o




Bloom Filter: Search

S={16,8,4,13,29,11,22} ~£find (16)
h(k) =k % 7

_find (20)

_find(3)

o A W N R O
m O L O Fr L O




Bloom Filter: Search @

H
The bloom filter is a probabilistic data structure! 0 (@)
. o <
If the value in the BF is O: 1
H(x)) o H()
0 J
H(x,) 1 4
If the value in the BF is 1: 0
1 4
H(xy) 2
H(x,) 0 H(S)




Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

$ CS 225 —_— —p “Not malicious”
. Introduction to Data Structures and Algorithms with C++

A

The site ahead contains harmful programs
Attackers on softwarez.us might attempt to trick you into installing programs that harm ll ° [ ’,
your browsing experience (for example, by changing your homepage or showing extra ads ﬁ ﬁ M a I ( I O ' l S
on sites you visit). 1]
Help improve Safe Browsing by sending some system information and page content to .
Privacy
Back to safet




Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive:
False Positive:
False Negative:

True Negative:




Imagine we have a bloom filter that stores malicious sites...

Bit Value =1 BitValue=0

Item Inserted

Item NOT inserted

False Positive True Negative




Probabilistic Accuracy: One-sided error

Query: '

Dataset:

search with one-
sided error

We will get some False Positives: '_’

We will NEVER have a False Negative: ’#’




Probabilistic Accuracy: One-sided error

search with one-
sided error

search with one-
sided error




Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter




Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

[—

O O =m O O =m =m =m O O = O = O O O = O O O




Bloom Filter: Repeated Trials

Use many hashes/filters; add each item to each filter

[—
o O - O 0 =) = - 00 - 0O - 0O 0 o —- o o o
_ O e O = e O e O e e O e OO0 =m0




O = — — O O v — O ™ ™ O —~ O Y — O — O

R

=

O O O — O O O —m O —m O O — — — O O — O O

]
=

' Repeated Trials
Use many hashes/filters; add each item to each filter

p—

=

Bloom Filter



h{1,2,3,...,k}()’)

O = ™ == O O ™ ™ O ™ ™ O ™ O ™ ™— O — O —

O O O — O O O —m O m O O ™~ — — O O — O o

Repeated Trials

O = O — O O O = O = = O = O = = O — O

Bloom Filter



h{1,2,3,...,k}()’)
If any query yields 0,
item is not in the set

1111111111111

11111111111111

Bloom Filter: Repeated Trials



Bloom Filter: Repeated Trials

0 0 0 0

1 0 1 1

0 0 1 \

1 1 1 T

0 0 0 1

0 0 0 1

0__ 0 1 0

1 |« 1 1 0

0 0 0 \0\

1 1 1 1 h{l 2 3,...,k}(Z)

1 0 1

0 0 0

1 1 1

0 1 0 0 . . .

: : : +If all queries yield 1, item
1 0 1 o

0 0 0 , may be in the set; or we

1 1 1 1 . . o

. - . . might have collided k times
1 0 1 1




Bloom Filter: Repeated Trials

Using repeated trials, even a very bad filter can still have a very low FPR!

If we have k bloom filter, each with a FPR p, what is the likelihood that all
filters return the value ‘1" for an item we didn't insert?




QO = — —
0000000000
11111
—

.
Vp]
| -
9
T
g
(g}
| -
(qe}
o
Q
(Vp]
A2
(@)
C
—
o
S (Vp]
W ~2
S 3 =~
-
= g
O Y o--
S o -H-H-B-B-B-H-0-§
t w © — O —
o = 3
v 2 =
(Vp]
p .  © o o — O o
e u 00000000000
o ©
- @\
e o o
- - =
e e
t .ﬁb O — O — O O O — O
L= 2 — — O — O — — O — O —
. -
h_l.. p—
E o =
Vp]
Q
O O
O ©
— o
M A



Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes
$S={6,8,4}
hi(X)=x% 10 ho(X)=2x% 10 h3(x) =(5+3x) % 10

O 00 N O 0 B W N —, O




Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes

o 0 hi(x)=x% 10 ha(x) =2x% 10 h3(x) =(5+3x) % 10
1 0

2 1 _find (1)

3 1

4 1

5 0

> £find (16)

7 1 —

8 1

9 1




Bloom Filter @

o . H={h1,h2,...,hk}
A probabilistic data structure storing a set of values

Built from a bit vector of length m and k hash functions

Insert / Find runs in:

Delete is not possible (yet)!

O -0 - 0 0O -—= O O




