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Bloom Filters



Learning Objectives

Build a conceptual understanding of a bloom filter

Review probabilistic data structures and one-sided error

Formalize the math behind the bloom filter

Review when you would prefer different data structures



Running Times
Hash Table AVL Linked List

Find

Expectation*: O(1)*** 

 
Worst Case: O(n)

O(log n) O(n)

Insert

Expectation*: O(1)*** 
 
 
Worst Case: O(n)

O(log n) O(1)

Storage Space O(n) O(n) O(n)



Memory-Constrained Data Structures
What method would you use to build a search index on a collection of 
objects in a memory-constrained environment?

Google Index Estimate: >60 billion webpages

Google Universe Estimate (2013): >130 trillion webpages

Constrained by Big Data (Large )N



Memory-Constrained Data Structures

GTEx

Constrained by Big Data (Large )N

Sequence Read Archive Size: >60 petabases (1015)

What method would you use to build a search index on a collection of 
objects in a memory-constrained environment?



Memory-Constrained Data Structures

Constrained by Big Data (Large )N

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB
Image: https://doi.org/10.1038/nature03597

What method would you use to build a search index on a collection of 
objects in a memory-constrained environment?

http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597


Memory-Constrained Data Structures

cache

RAM

disk

network

< 1 second

Months

Years

Hours - Days

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Constrained by resource limitations

What method would you use to build a search index on a collection of 
objects in a memory-constrained environment?

https://gist.github.com/hellerbarde/2843375


Memory-Constrained Data Structures
What method would you use to build a search index on a collection of 
objects in a memory-constrained environment?



Reducing storage costs

1) Throw out information that isn’t needed

2) Compress the dataset



Reducing a hash table

k2
v2

k1
v1

k5
v5
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k3
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v7

What can we remove from a 
hash table?

m

H(k1) = i1



k2k1

k5k4

k3

k6

k8k7

Take away values m

H(k1) = i1

Reducing a hash table

What can we remove from a 
hash table?



m

Reducing a hash table

What can we remove from a 
hash table?

Take away values and keys

H(k1) = i1
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This is a bloom filter

m

Reducing a hash table

What can we remove from a 
hash table?

Take away values and keys

H(k1) = i1



Bloom Filter ADT

Constructor

Insert

Find



Bloom Filter: Insertion

0 0
1 0
2 0
3 0
4 0
5 0
6 0

S = { 16, 8, 4, 13, 29, 11, 22 } 

h(k) = k % 7



Bloom Filter: Insertion
An item is inserted into a bloom filter by hashing 
and then setting the hash-valued bit to 1

If the bit was already one, it stays 1

0
0
1
0
0
1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)



Bloom Filter: Deletion

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 } 

h(k) = k % 7

_delete(13)

_delete(29)



Bloom Filter: Deletion

Due to hash collisions and lack of information, 
items cannot be deleted! 0
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H(x2)

H(x3)

H(x1)

H(x4)



Bloom Filter: Search

0 0
1 1
2 1
3 0
4 1
5 0
6 1

S = { 16, 8, 4, 13, 29, 11, 22 } 

h(k) = k % 7

_find(16)

_find(20)

_find(3)



Bloom Filter: Search

The bloom filter is a probabilistic data structure!
H(α)

If the value in the BF is 0: 

If the value in the BF is 1: 

0
0
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0
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1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)

H(β)

H(δ)



Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

“Not malicious”

“Malicious”



Probabilistic Accuracy: Malicious Websites

Imagine we have a detection oracle that identifies if a site is malicious

True Positive: 

False Positive: 

False Negative: 

True Negative: 



Item Inserted

Bit Value = 1

Item NOT inserted

Bit Value = 0

0
1
0
0
1

‘Yes’
H(z)

0
0
0
0
1

‘No’

True Positive

0
1
0
0
1

‘Yes’

False Positive

H(z) 0
0
0
0
1

‘No’

False Negative

True Negative

Imagine we have a bloom filter that stores malicious sites…



Probabilistic Accuracy: One-sided error

We will NEVER have a False Negative: ≠
We will get some False Positives: =

search with one-
sided error

Query:

Dataset:



search with one-
sided error

Query:

Dataset:

Query:

search with one-
sided error

…

Probabilistic Accuracy: One-sided error
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Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials
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Bloom Filter: Repeated Trials
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Bloom Filter: Repeated Trials
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Use many hashes/filters; add each item to each filter

Bloom Filter: Repeated Trials
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Bloom Filter: Repeated Trials
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If any query yields 0, 
item is not in the set

Bloom Filter: Repeated Trials
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If all queries yield 1, item 
may be in the set; or we 
might have collided k times

Bloom Filter: Repeated Trials



Using repeated trials, even a very bad filter can still have a very low FPR!

Bloom Filter: Repeated Trials

If we have  bloom filter, each with a FPR , what is the likelihood that all 
filters return the value ‘1’ for an item we didn’t insert?

k p
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But doesn’t this hurt our storage costs by storing   separate filters?k

Bloom Filter: Repeated Trials



Bloom Filter: Repeated Trials

0
1
2
3
4
5
6
7
8
9

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10
S = { 6, 8, 4 } 

Rather than use a new filter for each hash, one filter can use  hashesk



Bloom Filter: Repeated Trials

0 0
1 0
2 1
3 1
4 1
5 0
6 1
7 1
8 1
9 1

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10

_find(1)

_find(16)

Rather than use a new filter for each hash, one filter can use  hashesk



Bloom Filter

0
0
1
0
0
1
0
1
0
0

A probabilistic data structure storing a set of values

Built from a bit vector of length  and  hash functionsm k

Insert / Find runs in: _______________

Delete is not possible (yet)!

H = {h1, h2, . . . , hk}


