
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 21, 2025

Bloom Filters 2

Learning Objectives

Review probabilistic data structures and explore one-sided error

Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters

Review conceptual understanding of bloom filter

Memory-Constrained Data Structures

Constrained by Big Data (Large)N

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB
Image: https://doi.org/10.1038/nature03597

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

cache

RAM

disk

network

< 1 second

Months

Years

Hours - Days

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

Constrained by resource limitations

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

https://gist.github.com/hellerbarde/2843375

Bloom Filter: Insertion
1) Hash the input key to get its hash value

If the bit was already one, it stays 1

0
0
1
0
0
1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)

2) Set the bit at the hash value address to 1

Bloom Filter: Deletion
Due to hash collisions and lack of information,
items cannot be deleted! 0

0
0
0
0
1
0
0
0
0

H(x2)

H(x3)

H(x1)

H(x4)

Bloom Filter: Search

The bloom filter is a probabilistic data structure!
H(α)

If the value in the BF is 0:

If the value in the BF is 1:

0
0
1
0
0
1
0
1
0
0

H(x1)

H(x2)

H(x3)
H(x4)

H(β)

H(δ)

100% of time, we know it is not present

It may be present or it may be a hash collision

Item Inserted

Bit Value = 1

Item NOT inserted

Bit Value = 0

0
1
0
0
1

‘Yes’
H(z)

0
0
0
0
1

‘No’

True Positive

0
1
0
0
1

‘Yes’

False Positive

H(z) 0
0
0
0
1

‘No’

False Negative

True Negative

Probabilistic Accuracy in a Bloom Filter

Probabilistic Accuracy: One-sided error

We will NEVER have a False Negative: ≠
We will get some False Positives: =

search with one-
sided error

Query:

Dataset:

search with one-
sided error

Query:

Dataset:

Query:

search with one-
sided error

…

Probabilistic Accuracy: One-sided error

0

1
0

1
0

0

0

1
0

1
1
0

1
0

1
1
0

1
0

1

h1

Improve accuracy by using multiple hash functions as a ‘filter’

Bloom Filter: Repeated Trials

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1
0

0

0

1
0

1
0

0

1
1
1
0

0

1
0

0

h2

Bloom Filter: Repeated Trials
Improve accuracy by using multiple hash functions as a ‘filter’

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h3h2

0

1
1
1
0

0

1
1
0

1
1
0

1
0

1
1
0

1
0

1

Bloom Filter: Repeated Trials
Improve accuracy by using multiple hash functions as a ‘filter’

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h2

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

h3

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

hk...

Bloom Filter: Repeated Trials
Each of these Bloom Filters is a repeated trial — improved accuracy!k

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(y)

Bloom Filter: Repeated Trials
Each of these Bloom Filters is a repeated trial — improved accuracy!k

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1
1

0

1

0

1

0

0

0

1

0

0

0

1
0

1

0

0

1

1

1

0

0

1

0

0

0

1

1
1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0
0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(y)

Is y present?

Bloom Filter: Repeated Trials
Each of these Bloom Filters is a repeated trial — improved accuracy!k

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1
1

0

1

0

1

0

0

0

1

0

0

0

1
0

1

0

0

1

1

1

0

0

1

0

0

0

1

1
1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1

1

0
0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(y)

Is y present? No!

Bloom Filter: Repeated Trials
Each of these Bloom Filters is a repeated trial — improved accuracy!k

If any queries yield 0, item
is 100% not present!

0

1

0

1

0

0

0

1
0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1
0

0

0

1
1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1
1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(z)

Bloom Filter: Repeated Trials
Each of these Bloom Filters is a repeated trial — improved accuracy!k

Is z present?

0

1

0

1

0

0

0

1
0

1

1

0

1

0

1

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1
0

0

0

1
1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

1

1
1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

... h{1,2,3,...,k}(z)

If all queries yield 1, item
may be in the set; or we
might have collided k times

Bloom Filter: Repeated Trials
Each of these Bloom Filters is a repeated trial — improved accuracy!k

Is z present? Maybe!

Using repeated trials, even a very bad filter can still have a very low FPR!

Bloom Filter: Repeated Trials

If we have bloom filter, each with a FPR , what is the likelihood that all
filters return the value ‘1’ for an item we didn’t insert?

k p

0
1
0
1
0
0
0
1
0
1

0
0
0
1
0
0
0
1
0
1

0
1
1
1
0
0
1
1
0
1

0
1
1
1
1
1
0
0
0

0

1

0

1

0

0

0

1

0

1

1

0

1

0

1

1

0

1

0

1

h1

0

0

0

1

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

h2

0

1

1

1

0

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

h3

0

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

hk...

But doesn’t this hurt our storage costs by storing separate filters?k

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

0
1
2 1
3 1
4 1
5
6 1
7 1
8 1
9 1

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10
S = { 6, 8, 4 }

Rather than use a new filter for each hash, one filter can use hashesk

6

8

4

2

6

8

3

9

7

Bloom Filter: Repeated Trials

0 0
1 0
2 1
3 1
4 1
5 0
6 1
7 1
8 1
9 1

h1(x) = x % 10 h2(x) = 2x % 10 h3(x) = (5+3x) % 10

_find(1)

_find(16)

Rather than use a new filter for each hash, one filter can use hashesk

Bloom Filter

0
0
1
0
0
1
0
1
0
0

A probabilistic data structure storing a set of values

Built from a bit vector of length and hash functionsm k

Insert / Find runs in: _______________

Delete is not possible (yet)!

H = {h1, h2, . . . , hk}

Bloom Filter: Error Rate
Given bit vector of size and SUHA hash functionm k

h{1,2,3,...,k}

m

What is our expected FPR after objects are inserted?n

Bloom Filter: Error Rate
Given bit vector of size and 1 SUHA hash functionm

h{1,2,3,...,k}

m

What's the probability a specific bucket is 1 after
one object is inserted?

Same probability given SUHA hash function?k

Bloom Filter: Error Rate
Given bit vector of size and 1 SUHA hash functionm

h{1,2,3,...,k}

m

Probability a specific bucket is 0 after one object is inserted?

After objects are inserted?n

Bloom Filter: Error Rate
Given bit vector of size and SUHA hash functionm k

h{1,2,3,...,k}

m

What's the probability a specific bucket is 1 after
 objects are inserted?n

Bloom Filter: Error Rate
Given bit vector of size and SUHA hash functionm k

h{1,2,3,...,k}

m

What is our expected FPR after objects are inserted?n

The probability my bit is 1 after objects insertedn

(1 − (1 −
1
m)

nk

)
k

The number of [assumed independent] trials

Bloom Filter: Error Rate
Vector of size , SUHA hash function, and objectsm k n

h{1,2,3,...,k}

m

To minimize the FPR, do we prefer…

(1 − (1 −
1
m)

nk

)
k

 (A) large k (B) small k

Bloom Filter: Error Rate
Vector of size , SUHA hash function, and objectsm k n

(1−(1 −
1
m)

nk

)
k

 (A) large k (B) small k

As increases, this gets smaller! k

(1 − (1 −
1
m)

nk

)
k

As decreases, this gets smaller! k

Bloom Filter: Optimal Error Rate

Claim: The optimal hash function is when k * = ln 2 ⋅
m
n

(1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

d
dk (1 − e

−nk
m)

k
≈

d
dk (k ln(1 − e

−nk
m))

(1)

(2)

To build the optimal hash function, fix m and n!

Bloom Filter: Optimal Error Rate

Claim 1:

(1 −
1
m)

nk

= e
ln[(1 − 1

m)
nk]

(1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

Bloom Filter: Optimal Error Rate

Claim 1:

(1 −
1
m)

nk

= e
ln[(1 − 1

m)
nk]

= e
ln[(1 − 1

m)]nk

(1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

Bloom Filter: Optimal Error Rate

Taylors expansion of : ln(1 + x) x −
x2

2
+

x3

3
−

x4

4
+ . . .

“Mercator Series”

(1 −
1
m)

nk

≈ e
−nk
m

Bloom Filter: Optimal Error Rate

Claim 1:

(1 −
1
m)

nk

= e
ln[(1 − 1

m)
nk]

= e
ln[(1 − 1

m)]nk

≈ e
−nk
m

(1 − (1 −
1
m)

nk

)
k

≈ (1 − e
−nk
m)

k

Bloom Filter: Optimal Error Rate

Claim 2:

d
dx

ln f(x) =
1

f(x)
df(x)
dx

d
dk (1 − e

−nk
m)

k
≈

d
dk (k ln(1 − e

−nk
m))

Fact:

TL;DR: min [f(x)] = min [ln f(x)]

Derivative is zero when k* = ln 2 ⋅
m
n

h

Tradeoff for M/N=10

FPR

k

m /n = 10

(1 − e
−nk
m)

k

k* = ln 2 ⋅ 10 = 6.93

Bloom Filter: Error Rate

Figure by Ben Langmead

Bloom Filter: Optimal Parameters

 itemsn = 100 hashesk = 3 m =

k* = ln 2 ⋅
m
n

Given any two values, we can optimize the third

 bitsm = 100 itemsn = 20 k =

 bitsm = 100 itemsk = 2 n =

Bloom Filter: Optimal Parameters

m =
nk
ln 2

≈ 1.44 ⋅ nk Optimal hash function is still O(m)!

n = 60 billion — 130 trillion

n = 250,000 files vs ~1015 nucleotides vs 260 TB

Bloom Filter: Website Caching

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.

0
1
0
1
0
1

Loaded this before?

Cache this page!

Add to filter (but don’t cache!)

Bitwise Operators in C++
How can we encode a bit vector in C++?

Bitwise Operators in C++
Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab_Bloom won’t do this but MP_Sketching will!

0 0 0 0 1 1 1

1 0 0 1 0 1 0

Bloom Filters: Unioning

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bloom filters can be trivially merged using bit-wise union.

0
1
2
3
4
5
6
7
8
9

U =

Bloom Filters: Intersection

0 1
1 0
2 1
3 1
4 0
5 0
6 1
7 0
8 0
9 1

0 0
1 1
2 1
3 0
4 0
5 0
6 1
7 1
8 1
9 1

Bloom filters can be trivially merged using bit-wise intersection.

0
1
2
3
4
5
6
7
8
9

U =

Sequence Bloom Trees

ATGGTTAGAATTAAACCCGG
TGCTAATAAACCUAGTGATG

CGATAGCACAGGTAGATCC
TACGTAGAGGTCATTAGCC

….

TACGTAGAGGTCATTAGCCG
TGCTAATAAACCUAGTGATG

Imagine we have a large collection of text…

And our goal is to search these files
for a query of interest…

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Bit Vector Merging
What is the conceptual meaning behind union and intersection?

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Sequence Bloom Trees

Sequence Bloom Trees

Bloom filter

SRA 00001 SRA 00002 SRA 00003 SRA 00004 SRA 00005 SRA 00006 SRA 00007 SRA 00008

Are ≥ θ fraction of query
kmers ∈ this Bloom filter?

If YES, move to children

If NO, stop looking
at this subtree

(Global mismatch)

X X X X XXX

Sequence Bloom Trees

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

>2.5 years

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

>2 days

NIH
cluster

©
20

16
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

2 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A N A LY S I S

approach (Supplementary Fig. 2). These queries were performed over
varying sensitivity threshold Q (the minimum fraction of query k-mers
that must exist in order to return a ‘hit’) as well as the transcripts per
million (TPM) threshold used to select the query set (Supplementary
Figs. 3 and 4). For approximately half of the queries, the upper lev-
els of the SBT hierarchy provided substantial benefit, particularly on
queries that were not expressed in any experiment (Supplementary
Fig. 5 and Supplementary Table 4).

SBTs can speed up existing algorithms
SBTs can speed up the use of algorithms, such as STAR or SRA-BLAST,
by first ruling out experiments in which the query sequences are not
present. This allows the subsequent processing time to scale with the
size of the number of hits rather than the size of the database. We
first used SBTs to filter the full dataset consisting of 2,652 human
blood, breast and brain RNA-seq experiments. We then compared
the performance of STAR or SRA-BLAST on the filtered dataset with
the time to process the unfiltered dataset with these algorithms. Using
SBTs to first filter the data reduced the overall query time of STAR or
SRA-BLAST by a factor of y3 (Supplementary Fig. 6).

Measuring the performance of SBT
To analyze the accuracy of the SBT filter, we compared the experiments
returned by SBT with those in which the query sequence was estimated
to be expressed using Sailfish20. Because it is impractical to use existing
tools to estimate expression over the entire set of experiments, we que-
ried the entire tree, but estimated accuracy on a set of 100 random files
on which we ran Sailfish (Fig. 2). Three collections of representative
queries were constructed using Sailfish, denoted by High, Medium and
Low, which included transcripts of length >1,000 nt that were likely to
be expressed at a higher, medium or low level in at least one experiment
contained in the set of 100 experiments on which Sailfish was run. The
High set was chosen to be 100 random transcripts with an estimated
abundance of >1,000 TPM in at least one experiment. The Medium and
Low query sets were similarly chosen randomly from among transcripts
with >500 and >100 TPM, respectively. These Sailfish estimates were
taken as the ground truth of expression for the query transcripts.

Both false positives and false negatives can arise from a mismatch
between SBT’s definition of present (coverage of k-mers over a sufficient
fraction of the query) and Sailfish’s definition of expressed (as estimated

by read mapping and an expectation-maximization inference). These
two definitions are related, but not perfectly aligned, resulting in some
disagreement that is quantified by the false-positive rates (FPR) and
false-negative rates of Figure 2. The observed false negatives are pri-
marily driven by a few outlier queries for which the SBT reports no
results but their expression is above the TPM threshold as estimated
by Sailfish. This is supported by the fact that the average true-positive
rate at Q = 0.7 for queries that return at least one file was 96–100%,
and the median true-positive rate across all queries was 100% for all
but the strictest Q (Fig. 2).

DISCUSSION
We used SBT to search all blood, brain and breast SRA sequencing runs
for the expression of all 214,293 known human transcripts and used these
results to identify tissue-specific transcripts (Supplementary Table 5
and Supplementary Fig. 7). This search took 3.3 d using a single thread
(Supplementary Fig. 8). There are presently no search or alignment
tools that can solve this scale of sequence search problem in a reasonable
time frame, but we estimate an equivalent search using Sailfish would
take 92 d. The speed and computational efficiency of SBTs will enable
both individual laboratories and sequencing centers to support large-
scale sequence searches, not just for RNA-seq data, but for genomic and
metagenomic collections as well. Researchers could search for conditions
from among thousands that are likely to express a given novel isoform or
use SBTs to identify metagenomic samples that are likely to contain a par-
ticular strain of bacteria. Fast search of this type will be essential to make
good use of the ever-growing collection of available sequencing data.

Currently, it is difficult to access all the relevant data relating to a
particular research question from available sequencing experiments.
Individual hospitals, sequencing centers, research consortia and
research groups are collecting data at a rapid pace, and face the same dif-
ficulty of not being able to test computational hypotheses quickly or to
find the relevant conditions for further study. SBTs enable the efficient
mining of these data and could be used to uncover biological insights
that can be revealed only through the analysis of multiple data sets from
different sources. Furthermore, SBTs do not require prior knowledge
about sequences of interest, making it possible to identify, for example,
the expression of unknown isoforms or long noncoding RNAs. This
algorithm makes it practical to search large sequencing repositories and
may open up new uses for these rich collections of data.

107

106

105

104

103

102

101

SBT

SRA-B
LA

ST
STA

R

(C
PU tim

e) STA
R

(15
-th

re
ad

)

Ti
m

e
(m

in
)

Figure 1 Estimated running times of search tools for one transcript. The
SBT per-query time was recorded using a maximum of a single filter in
active memory and one thread. The other bars show the estimated time to
achieve the same query results using SRA-BLAST and STAR.

1.0

0.9

0.8 0.7

TPM
100
500
1,000

0.6 0.5

0.8

0.6

0.4

0.2

0
0

� = 1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Tr
ue

 p
os

iti
ve

False positive

Figure 2 Receiver operating characteristic (ROC) curve averaged over
100 queries with estimated expression >100, >500 and >1,000 TPM
and variable Q (Online Methods). Solid lines represent mean true-positive
and false-positive rates, dashed lines represent the median rates on the
same experiments. Relaxing Q leads to a higher sensitivity at the cost of
specificity. In more than half of all queries, 100% of true-positive hits can
be found with Q as high as 0.9.

19
mins

single
CPU

SR
A-

BL
AS
T

SRA FASTA.gz SBT
Leaves 4966 GB 2692 GB 63 GB
Full Tree - - 200 GB

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read
sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic
sequencing databases using split sequence bloom trees." International
Conference on Research in Computational Molecular Biology. Springer, Cham,
2017.

Sun, Chen, et al. "Allsome sequence bloom trees." International Conference
on Research in Computational Molecular Biology. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence
bloom trees." Bioinformatics 36.3 (2020): 721-727.

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient
Counting Bloom Filter." 2021 17th International Conference on Network and Service Management
(CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." IEEE/ACM transactions on networking 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

There are many more than shown here…

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 2004.

