Data Structures and Algorithms

Bloom Filters 2

CS 225 November 21, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review conceptual understanding of bloom filter

Review probabilistic data structures and explore one-sided error
Formalize the math behind the bloom filter

Discuss bit vector operations and potential extensions to bloom filters

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Constrained by Big Data (Large NN)

Sky Survey Projects Data Volume
DPOSS (The Palomar Digital Sky Survey) 3TB
2MASS (The Two Micron All-Sky Survey) 10TB
GBT (Green Bank Telescope) 20 PB
GALEX (The Galaxy Evolution Explorer) 30TB

o SDSS (The Sloan Digital Sky Survey) 40 TB
SkyMapper Southern Sky Survey 500 TB
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System) ~ 40 PB expected
LSST (The Large Synoptic Survey Telescope) ~ 200 PB expected
SKA (The Square Kilometer Array) ~ 4.6 EB expected

Table: http://doi.org/10.5334/dsj-2015-011

Estimated total volume of one array: 4.6 EB

Image: https://doi.org/10.1038/nature03597

http://doi.org/10.5334/dsj-2015-011
https://doi.org/10.1038/nature03597

Memory-Constrained Data Structures

What method would you use to build a search index on a collection of
objects in a memory-constrained environment?

Constrained by resource limitations

cache < 1 second

RAM Hours - Days

disk Months

network Vears

(Estimates are Time x 1 billion courtesy of https://gist.github.com/hellerbarde/2843375)

https://gist.github.com/hellerbarde/2843375

Bloom Filter: Insertion

1) Hash the input key to get its hash value

2) Set the bit at the hash value address to 1

If the bit was already one, it stays 1

H(x,)

H(x,)

H (x3)
H(x,)

O -0 - 0 0O -—= O O

Bloom Filter: Deletion

Due to hash collisions and lack of information,
items cannot be deleted!

H(x;)

H(x,)

H(x3)
H (X4)

O Ol —m 0ooO0 ©0 o o

Bloom Filter: Search @

H
The bloom filter is a probabilistic data structure! J(a)
If the value in the BF is O: o
100% of time, we know it is not present H(x;) H(p)
H(x,)

If the value in the BF is 1:

It may be present or it may be a hash collision H(x,)
3

O O = O - O O — 0O O

H(x,) H(5)

Probabilistic Accuracy in a Bloom Filter

Bit Value =1 BitValue=0

Item Inserted

Item NOT inserted

False Positive True Negative

Probabilistic Accuracy: One-sided error

Query: '

Dataset:

search with one-
sided error

We will get some False Positives: '_’

We will NEVER have a False Negative: ’#’

Probabilistic Accuracy: One-sided error

search with one-
sided error

search with one-
sided error

Bloom Filter: Repeated Trials

Improve accuracy by using multiple hash functions as a ‘filter’

Bloom Filter: Repeated Trials

Improve accuracy by using multiple hash functions as a ‘filter’

[—

O O =m O O =m =m =m O O = O = O O O = O O O

Bloom Filter: Repeated Trials

Improve accuracy by using multiple hash functions as a ‘filter’

[—
o O - O 0 =) = - 00 - 0O - 0O 0 o —- o o o
_ O e O = e O e O e e O e OO0 =m0

11111111111111111111

11111111111111111111

00000000000000000000

00000000000000000000

Each of these k Bloom Filters is a repeated trial — improved accuracy!

Bloom Filter: Repeated Trials

Bloom Filter: Repeated Trials

Each of these k Bloom Filters is a repeated trial — improved accuracy!

h{1,2,3,...,k}()’)

o 0o -~ 00 - = - 00 0 - 0O - 000 o - o o o
_ 0O =, O =) = 0O . O) =2 0O =) =2 OO = == = O

Bloom Filter: Repeated Trials

Each of these k Bloom Filters is a repeated trial — improved accuracy!

0
1
1
1
0
0
1

h{1,2,3,...,k}(Y)

/ y present?

-_ (@) —_ o —_ -_ o -4

- O - O)/ =m0 - O = - 0O - 00 o - o = o0
o O - O o0 4 = = O O = O =i0O OO —- 0o o o

—‘—‘—‘—‘—‘—‘OO—‘O—‘OOO—‘—‘—‘—‘—‘O

_ O = O =

Bloom Filter: Repeated Trials

Each of these k Bloom Filters is a repeated trial — improved accuracy!

0
1
1
1
0
0
1

h{1,2,3,...,k}(Y)

/y present? No!

-_ (@) —_ o —_ -_ o -4

_ O = O = m O 0O =) —_-_"oO - 000 O = 0O - o0

If any queries yield 0, item
Is 100% not present!

o O - OO0 4 = = O O = O =0 O O — O O o
—\—‘—‘—\—‘—‘OO—‘O—‘OOO—‘—‘—‘—‘—‘O

_ O = O =

Bloom Filter: Repeated Trials

Each of these k Bloom Filters is a repeated trial — improved accuracy!

0 0 0 0

1 0 1 1

0 0 i \

1 1 1 TN

0 0 0 1

0 0 0 1

0__ 0 1 0

1 <« .| 1 0

0 0 o . TT—

1 1 1 1 h{l 2 3,...,k}(Z)
1 0 1 0

0 0 0 1

; 1 1 Is z present?
0 1 0 0

1 1 1 1

1 0 1

0 0_ 1

1 1 1

0 0 1

1 0 1

Bloom Filter: Repeated Trials

Each of these k Bloom Filters is a repeated trial — improved accuracy!

;; \0\\

1 1 1 h{l 2 3,...,k}(Z)

: ; ~ Isz present? Maybe!

: | If all queries yield 1, item

1 1 may be in the set; or we

0 . might have collided k times

Bloom Filter: Repeated Trials

Using repeated trials, even a very bad filter can still have a very low FPR!

If we have k bloom filter, each with a FPR p, what is the likelihood that all
filters return the value ‘1" for an item we didn't insert?

0 0 0 0
1 0 1 1
0 0 1 1
1 1 1 :
0 0 0 :
0 0 0

0 0 1 1
1 1 1 0
0 0 0 0
1 1 1 0

QO = — —
0000000000
11111
—

.
Vp]
| -
9
T
g
(g}
| -
(qe}
o
Q
(Vp]
A2
(@)
C
—
o
S (Vp]
W ~2
S 3 =~
-
= g
O Y o--
S o -H-H-B-B-B-H-0-§
t w © — O —
o = 3
v 2 =
(Vp]
p . © o o — O o
e u 00000000000
o ©
- @\
e o o
- - =
e e
t .ﬁb O — O — O O O — O
L= 2 — — O — O — — O — O —
. -
h_l.. p—
E o =
Vp]
Q
O O
O ©
— o
M A

Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes

$={6,8,4}
hi(x)=x% 10 ha(x) =2x% 10 h3(x) =(5+3x) % 10
1 6 2 3
1
1 8 6 9
4 8 7

O 00 N O 0 B W N —, O

N

Bloom Filter: Repeated Trials

Rather than use a new filter for each hash, one filter can use k hashes

o 0 hi(x)=x% 10 ha(x) =2x% 10 h3(x) =(5+3x) % 10
1 0

2 1 _find (1)

3 1

4 1

5 0

> £find (16)

7 1 —

8 1

9 1

Bloom Filter @

o . H={h1,h2,...,hk}
A probabilistic data structure storing a set of values

Built from a bit vector of length m and k hash functions

Insert / Find runs in:

Delete is not possible (yet)!

O -0 - 0 0O -—= O O

Bloom Filter: Error Rate hiios.

Given bit vector of size m and k SUHA hash function

What is our expected FPR after 1 objects are inserted?

Bloom Filter: Error Rate

Given bit vector of size m and 1 SUHA hash function

What's the probability a specific bucket is 1 after
one object is inserted?

Same probability given £ SUHA hash function?

hiios.. 0

Bloom Filter: Error Rate hiios.

Given bit vector of size m and 1 SUHA hash function

Probability a specific bucket is O after one object is inserted?

After n objects are inserted?

Bloom Filter: Error Rate hiios.

Given bit vector of size m and k SUHA hash function

What's the probability a specific bucket is 1 after
n objects are inserted?

Bloom Filter: Error Rate

Given bit vector of size m and k SUHA hash function

What is our expected FPR after 1 objects are inserted?

The probability my bit is 1 after n objects inserted

k
(1>nk
1—(1-—
m

The number of [assumed independent] trials

h{ 1,2,3,....k}

Bloom Filter: Error Rate hiios.

Vector of size m, k SUHA hash function, and n objects

To minimize the FPR, do we prefer...

(A) large k (B) small £ m

1 nk
1-(1--)
m

k

Bloom Filter: Error Rate

Vector of size m, k SUHA hash function, and n objects

(A) large k (B) small £

(-(-2)) (-(-2))

As kincreases, this gets smaller! As k decreases, this gets smaller!

Bloom Filter: Optimal Error Rate

To build the optimal hash function, fix m and n!

m
Claim: The optimal hash functioniswhen k* = [n 2 - —
n

2) % (1 _ e‘n?k)k ~ % <k In(1 — e‘n’i"))

Bloom Filter: Optimal Error Rate

Claim 1: (1 - (1 —%Yk)kz (1 —e‘T"">k
(1 _L)”"zem[@—%)”"]

m

Bloom Filter: Optimal Error Rate

1 nk k k
Claim1: { 1 -1 -—— z<1—e_7nk>
m

Bloom Filter: Optimal Error Rate

2
Taylors expansion of In(1 + x): X —

X X

2
“Mercator Series”

Bloom Filter: Optimal Error Rate

1 nk k k
Claim1: { 1 -1 -—— z<1—e_7nk>
m

Bloom Filter: Optimal Error Rate

d —n k d —-n
Claim2: — (1 — eTk) N — <k In(1 — 67k)>
dk dk

1 df(x)
f(x) dx

Fact: Eln f(x) =

TL;DR: min [f(x)] = min [ln f(x)]

m
Derivative is zero when k* = 1In2 - —
n

Bloom Filter: Error Rate

m/n =10

k*=In2 .10 = 6.93

Figure by Ben Langmead

Bloom Filter: Optimal Parameters

m
k* =1In2 -—| Given any two values, we can optimize the third

n
n=100items & = 3 hashes m =
m = 100 bits n = 20 items k =

m = 100 bits k = 2 items n=

Bloom Filter: Optimal Parameters

k
m = RS ~ 1.44 - nk| Optimal hash function is still O(m)!

In2

- n = 250,000 files vs ~1075 nucleotides vs 260 TB

M e
~

1000 Genomes Project

Defining Genetic Variatiorr in People
S

** n=60 billion — 130 trillion

Bloom Filter: Website Caching

Loaded this before?

Cache this page!

Add to filter (but don't cachel)

-5 14000
O 12000 o0 [99% D s W
kd > S "¢ ?o° 09"

oY ® Q%%& AP A

Q b 28 ANy ;

810000 9 2 N

a < 8qg QOQOQ gO PUS OO Q&OQO) oo QOQOQ

8000 0o — < 3 ° e,

o oo™ % & % o G ¢ P

4] Qo & O%OO .o o P 9|

o 6000 p W@O O%WMO "]

-‘: @ OOOO 03 Q&OQOOO 020/?20 @2@

E 4000 S o b9 4N

=< 2000 Bloom filter

: "

8 o turned on

17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

Maggs, Bruce M., and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer Communication Review 45.3 (2015): 52-66.

Bitwise Operators in C++

How can we encode a bit vector in C++7?

Bitwise Operators in C++

Traditionally, bit vectors are read from RIGHT to LEFT

Warning: Lab_Bloom won’t do this but MP_Sketching will!

Bloom Filters: Unioning

Bloom filters can be trivially merged using bit-wise union.

0 1 0O O 0
1 0 1 1 1
2 1 2 1 2
3 1 3 0 3
4 0 U 24 o — 4
5 O 5 0 5
6 1 6 1 6
7 0 7 1 7
8 0 8 1 8
9 1 9 1 9

Bloom Filters: Intersection

Bloom filters can be trivially merged using bit-wise intersection.

0 1 0O O 0
1 0 1 1 1
2 1 2 1 2
3 1 3 0 3
4 0 U 24 o — 4
5 O 5 0 5
6 1 6 1 6
7 0 7 1 7
8 0 8 1 8
9 1 9 1 9

Sequence Bloom Trees

Imagine we have a large collection of text...

TGCTAATAAACCUAGTGATG

| for a query of interest...
CGATAGCACAGGTAGATCC

TACGTAGAGGTCATTAGCC

%-. ATGGTTAGAATTAMCCCGG | And our goal is to search these files

] TACGTAGAGGTCATTAGCCG
— TGCTAATAAACCUAGTGATG

Bit Vector Merging

What is the conceptual meaning behind union and intersection?

SRA 00001 SRA 00002 SRA 00003 SRAO00004 SRAO00005 SRAO00006 SRAO00007 SRA 00008

Sequence Bloom Trees

SRA 00001 SRA 00002 SRA 00003 SRAO00004 SRAO00005 SRAO00006 SRAO00007 SRA 00008

Sequence Bloom Trees

Are > B fraction of query
kmers e this Bloom filter?

*
*
k

If YES, move to children

Bloom filter
I If NO, stop looking

at this subtree
LLLILL] (Global mismatch)

f X)

HNEEEEnEEEEEEnEEEEEEn NS EEEEEEeEEEEEEEEEEEEEEEEEEEn
SRA 00001 SRA 00002 SRA 00003 SRAO00004 SRAO00005 SRAO00006 SRAO00007 SRA 00008

X X X X X X X

Sequence Bloom Trees

Time (min)

107

10°

SRA

FASTA.gz

SBT

49606 GB

2692 GB

63 GB

200 GB

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read

sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, Brad, and Carl Kingsford. "Improved search of large transcriptomic

sequencing databases using split sequence bloom trees." International
Conference on Research in Computational Molecular Biology. Springer, Cham,

Sun, Chen, et al. "Allsome sequence bloom trees." International Conference

on Research in Computational Molecular Biology. Springer, Cham, 2017.

Harris, Robert S., and Paul Medvedev. "Improved representation of sequence
bloom trees." Bioinformatics 36.3 (2020): 721-727.

>2.5 years
- Leaves
i NIH Full Tree
cluster
I !
>
2 dayssingle
- CPU
!
- 19 2017,
mins
1
& Q 4 A
Fo & COQ??@& 24
S>° N Q¥

Bloom Filters: Tip of the Iceberg

Cohen, Saar, and Yossi Matias. "Spectral bloom filters." Proceedings of the 2003 ACM SIGMQOD international conference on
Management of data. 2003.

Fan, Bin, et al. "Cuckoo filter: Practically better than bloom." Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies. 2014.

Nayak, Sabuzima, and Ripon Patgiri. "countBF: A General-purpose High Accuracy and Space Efficient
Counting Bloom Filter." 2021 17th International Conference on Network and Service Management
(CNSM). IEEE, 2021.

Mitzenmacher, Michael. "Compressed bloom filters." IEEE/ACM transactions on networking 10.5 (2002): 604-612.

Crainiceanu, Adina, and Daniel Lemire. "Bloofi: Multidimensional bloom filters." Information Systems 54 (2015): 311-324.

Chazelle, Bernard, et al. "The bloomier filter: an efficient data structure for static support lookup tables." Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms. 2004,

There are many more than shown here...

