Data Structures and Algorithms

Cardinality

CS 225 December 1, 2025
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Review bloom filters and identify the ‘weakness’ of BFs

Introduce the concept of cardinality and cardinality estimation

Bloom Filters @

A probabilistic data structure storing a set of values hi23,. k)

Has three key properties:

k, number of hash functions
n, expected number of insertions
m, filter size in bits

1\ ‘ k
Expected false positive rate: (1 _ (1 _ _)) ~ <1 B e-;k)
m

m
Optimal accuracy when: k*=In2-—
n

The hidden problem with (most) sketches...

Cardinality

Cardinality is a measure of how many unique items are in a set

QU NOINIWIO P&~

Cardinality

Sometimes its not possible or realistic to count all objects!

cat photos y Q

Q Al (&) Images & News [2] Videos [f] Books i More Settings Tools

About 4,850,000,000 results (0.49 seconds)

Images for cat

4.0 .. f ‘ y S
‘; wallpaper white J kitten black ‘ cartoon g’ s >

.VA

Estimate: 60 billion — 130 trillion

Image: https://doi.org/10.1038/nature03597

5581

8945

6145

8126

3887

8925

1246

8324

4549

9100

5598

8499

8970

3921

8575

4859

4960

42

6901

4336

9228

3317

399

6925

2660

2314

https://doi.org/10.1038/nature03597

Cardinality Estimation
Imagine | fill a hat with numbered cards and draw one card out at random.

If | told you the value of the card was 95, what have we learned?

TN

r’

Analogy from Ben Langmead

Cardinality Estimation
Imagine | fill a hat with a random subset of numbered cards from 0 to 999

If | told you that the minimum value was 95, what have we learned?

TN

r’

w44 [E]
Cardinality Estimation zn
y S

Imagine we have multiple uniform random sets with different minima.

0
10 95 200 500

999

Cardinality Estimation

Let min = 95. Can we estimate /V, the cardinality of the set?

0 999
95

Cardinality Estimation

Let min = 95. Can we estimate /V, the cardinality of the set?

0 999
95

1000
(N+1)

Claim:95 ~

Cardinality Estimation @

Let min = 95. Can we estimate /V, the cardinality of the set?

0 999
95

Conceptually: If we scatter N points randomly across the interval, we
end up with N + 1 partitions, each about 1000/(N + 1) long

Assuming our first ‘partition’is about average: 95 ~ 1000/(N + 1)

N+1~10.5
N~ 9.5

Cardinality Estimation

Why do we care about “the hat problem”?

TN

g

Cardinality Estimation

Why do we care about “the hat problem”?

m possible minima

Universe of card sets Key

Cardinality Estimation @

Imagine we have a SUHA hash % over a range m.

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a sketch that estimates the cardinality!

h(x)

Cardinality Estimation

Imagine we have a SUHA hash /1 over a range m.
Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a sketch that estimates the cardinality!

To make the math work out, lets normalize our hash...

h'(x)=h(x)/ (m-—1)

Cardinality Sketch

Let M = min(X;, X5, ..., Xy)whereeach X; € [0, 1]is an uniform
independent random variable

Claim: E[M] =
N+1

Cardinality Sketch

Consideran N + 1 draw: | X, | X,| X;| -

XN+1

Xy41 €an end up in one of two ranges:

M = min X,

1<i<N

Cardinality Sketch

Consideran N + 1 draw: | X[X,| X5|~ | Xy

XN+1

Xy41 €an end up in one of two ranges:

X1 Will be the new minimum with probability M

M

B

M = min X,

1<i<N

Cardinality Sketch

Consideran N + 1 draw: X1 X X501 [Xl Xiaq M = 121,12\7)(’

Xy41 €an end up in one of two ranges:
X1 Will be the new minimum with probability M

X1 will not change minimum with probability 1 — M

M 1

B

Cardinality Sketch

: . | M = n X.
Consideran N + ldraw: | X[X,| X5|~ [Xy | Xy 12151}\7 i
Xy 41 Will be the new minimum with probability M
By definition of SUHA, X, has a chance of being smallest item

N+ 1

M

0 \ 1

Cardinality Sketch

: . | M = n X.
Consideran N + ldraw: | X[X,| X5|~ [Xy | Xy 12151}\7 i
Xy 41 Will be the new minimum with probability M
By definition of SUHA, X, has a chance of being smallest item

N+ 1

Thus, E[M] =
N

+ 1
M

0 \ 1

Cardinality Sketch

Claim: E[M] = ~

N + N =~ Y 1
Attempt 1 0.962]0.328|0.771{0.952(0.923
Attempt 2 0.253]0.839|0.327|0.655(0.491
Attempt 3 0.134|0.580(0.364|0.7430.931

Cardinality Sketch

The minimum hash is a valid sketch of a dataset but can we do better?

Cardinality Sketch

Claim: Taking the k™_smallest hash value is a better sketch!

Claim:E[M,]| =
M, N+ 1

Cardinality Sketch

Claim: Taking the k™_smallest hash value is a better sketch!
E[M,] B 1
k N+1
1
— [E[Mﬂ + (EM, —E[M,])+...+ (E[M,] - E[Mk—l])] -

Claim:

Cardinality Sketch

I E[M]
N+1 &k

1
= [EIM,] + (EIM,] ~ EIM,]) + ...+ (E[V,] ~ EIM,_])] - —
0 // / 1
B

M, M, M; M1 M,

th o e 1
k™ minimum Averages k estimates for
value (KMV) N+ 1

Cardinality Sketch

Min
O 10th smallest
100th smallest

Estimate
2000 4000 6000 8000 10000
|

0
|

True cardinality = 1,000 Tral

Cardinality Sketch @

Given any dataset and a SUHA hash function, we can estimate the
number of unique items by tracking the k-th minimum hash value.

0.25310.8390.327 [0.655 | 0.491

To use the k-th min, we have to track k minima. Can we use ALL minima?

Applied Cardinalities

Cardinalities Set similarities
|A| |ANB]
O =
| B min(|A|,|B|)
|A U B]| ,_1ANB
‘A ﬂB\ AUB

Real-world
Meaning

AGGCCACAGTGTATTATGACTG

AGGCCACAGTGAGTTATGACTG

AAAAAAAAAAAGATGT-AAGTA

AAAAAAAAAAAGATGTAAAGTA

GAGG--TCAGATTCACAGCCAC

GAGGGGTCAGATTCACAGCCAC

N\

Review content (if time)

Graph Implementation: Edge List 1VI= n, |[E|= m

The equivalent of an ‘unordered’ data structure

Q. Vertex Storage:
70X
© b @ d © An optional list of vertices
v Tuls Edge Storage:
N Ta1. A list storing edges as (V1, V2, Weight)
z w z d

Most graphs are stored as just an edge list!

Graph Implementation: Adjacency Matrix
|IV|=n, |E|= m

Vertex Storage:
/GDY A hash table of vertices
b d - - :
O W) © Implicitly or explicitly store index

ulo -n-nn Edge Storage:

o A|V]x|V| matrix of edges

b 0 Weightisstored at position (u, v)
d

Adjacency List Vertex Storage: @

A bidirectional linked list with size variable

(W
/ bx ; Each node is a pointer to edge in edge list
© @—Q

Edge Storage:

. Alist of (v1, v2, weight) edges

-~ Also store pointers back to nodes

|IV|=n, |E|=m

Edge List Adjacency Matrix Adjacency List
Expressed as O(f)
n+m n2 n+m

Space

insertVertex(v) 1* n* 1*
removeVertex(v) n+m n deg(v)
insertEdge(u, v) 1 1 1*

min(deg(u),
removeEdge(u, v m 1
H deg(v)
incidentEdges(v) m n deg(v)

min(deg(u),

areAdjacent(u, v m 1
jacent{u, v) deg(v))

Summary: DFS and BFS |IVI=n, |E|=m
Both are O(n+m) traversals! They label every edge and every node

BFS DFS

Solves unweighted MST Solves unweighted MST
Solves shortest path
Solves cycle detection Solves cycle detection

Memory bounded by width Memory bounded by longest path

WoOoOJooUld WN =

Kruskal’s Algorithm

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v : G.vertices()):
forest.makeSet (v)

PriorityQueue Q // min edge weight
Q.buildFromGraph (G.edges ())

Graph T = (V, {})

while |T.edges ()| < n-1:
Vertex (u, v) = Q.removeMin ()

if forest.find(u) !'= forest.find(v):

T .addEdge (u, v)
forest.union(forest.find(u),
forest.find(v))

return T

1) Build a priority queue on edges
A minheap
o A sorted array
2) Build a disjoint set on vertices
All vertices start as their own set
3) Loop through min edges
If edge connects two disjoint sets
Union sets and record edge in MST
4) Stop when:
N-1 edges recorded

Only a single disjoint set remains

Kruskal’'s Algorithm

OWooOJdJonUl e WN =

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v :

forest.makeSet (v)

G.vertices()):
PriorityQueue Q // min edge weight
Q.buildFromGraph (G.edges ())

Graph T = (V, {})

while |T.edges ()| < n-1:
Vertex (u, v) = Q.removeMin ()

if forest.find(u) !'= forest.find(v):

T .addEdge (u, v)
forest.union(forest.find(u),
forest.find(v))

return T

|IV|=n, |E|]=m

What is the Big O?
2—4:0(n)
Heap: O(m)

Sorted List: O(m log m)

1T:mx<12-17>
Heap: O(log m)

12—=17: Sorted List: O(1)

O(n+ m+mlog m)

Simplified: O(n + m log n)

Prim'’s gorithm

15

2,A|11,E/5,B|8,D|9,D

OWCoOoOJoUldWN =

PrimMST (G, s):
Input: G, Graph;
s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G.vertices()):

d[v] = +inf
p[v] = NULL
d[s] = O

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin ()
T.add (m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
plv] = m

return T

Prim’s Big O IVi=n,|El=m

6 | PrimMST (G, s):
7 foreach (Vertex v : G.vertices()):
/ —9: O(n) 8 d[v] = +inf
9 p[v] = NULL
10 d[s] = 0
11
12 PriorityQueue Q // min distance, defined by d[v]
12_1 4: 13 Q.bzildll;ea:(z.vertices())s e - - Y
14 Graph T // "labeled set"
1 . 15
MInHeap' O(n) 16 repeat n times:
17 Vertex m = Q.removeMin ()
Unsorted Array: O(1) | 18| r.addtm
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
. . 1 | 21 d[v] = cost(v, m)
16—22: Complicated! 2> ol - o
23
Depends on choice of PriorityQueue (MinHeap vs Unsorted Array)
Depends on choice of Graph (Adjacency Matrix vs Adjacency List)

PrimMST (G, s):

Prim,s Algorithm 2 foze[:]ch (\-::zif:ex v : G.vertices()):

9 plv] NULL
Sparse Graph:(m ~n) 10| als] =0

12 PriorityQueue Q // min distance, defined by d[v]
13 Q.buildHeap (G.vertices())

14 Graph T // "labeled set"
15
16 repeat n times:
17 Vertex m = Q.removeMin ()
Dense Graph: (m ~ n2) 18 T.add (m)
19 foreach (Vertex v : neighbors of m not in T):
20 if cost(v, m) < d[v]:
21 d[v] = cost (v, m)
22 plvl] = m
23

Lines 7 — 14 are O(n) [at most]

I Y

Heap O(n2 + m Ig(n)) O(n Ig(n) + m Ig(n))

Unsorted
Array O(n2) O(n2)

Dijkstra’s Algorithm (SSSP)

DijkstraSSSP (G, s):

7

10 f
@)/5
®

v

<E> 1

7
6
3

\2

0 10 16

~©)

15

Jﬁ
YW

K

5

10

7

foreach (Vertex v : G.vertices()):

d[v] = +inf
p[v] = NULL
d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex u = Q.removeMin ()
T.add (u)
foreach (Vertex v : neighbors of u not in T):
if cost(u, v) + d[u] < d[v]:
d[v] cost(u, v) + d[u]
plv] u

8

(e el felF 9B
- A E B G A F C

20

Floyd-Warshall Algorithm

Floyd-Warshall’s Algorithm is an alternative to Dijkstra in the presence
of negative-weight edges (not negative weight cycles).

FloydWarshall (G) :
Let d be a adj. matrix initialized to +inf
foreach (Vertex v : G):
d[v][v] =0
foreach (Edge (u, v) : G):
d[u] [v] = cost(u, v)

WoJoUld WDNR

foreach (Vertex u : G):
foreach (Vertex v : G):
10 foreach (Vertex w : G):
11 if (d[u, v] > d[u, w] + d[w, Vv])
12 d[u, v] = d[u, w] + d[w, V]

A Hash Table based Dictionary

User Code (is a map):

1 |Dictionary<KeyType, ValueType> d;
2 |d[k] = v;

A Hash Table consists of three things:
1. A hash function

2. A data storage structure

3. A method of addressing hash collisions

Open vs Closed Hashing

Addressing hash collisions depends on your storage structure.

e Open Hashing: store k,v pairs externally

wN - O

“ Ali Alice Anna
Q.\ B+ A+ A-
4 %

¢ Closed Hashing: store k,v pairs in the hash table
0

1
2
3

Separate Chaining Under SUHA
n
Claim: Under SUHA, expected length of chain is— Table Size: m

m
a; = expected # of items hashing to position j Num objects: n
1 ifitem i hashes to |
o; = H; ; H . =
Z W { 0 otherwise
1
. m

E[aj] =n *Pr(Hl-,j =1

1

Separate Chaining Under SUHA @

Under SUHA, a hash table of size m and n elements:

Find runs in: O(1 + o)

Insert runs in: O(1)

Remove runsin: O(1 + a)

OO0 NOOUL B WN K- O

[ERY
o

Run ning Times (Don’t memorize these equations, no need.)
The expected number of probes for find(key) under SUHA
Linear Probing:
o Successful: %(1 + 1/(1-a))
e Unsuccessful: %(1 + 1/(1-a))2
Instead, observe:

Double Hashing: - As a increases:

e Successful: 1/a * In(1/(1-a)) Runtime approaches infinity!

e Unsuccessful: 1/(1-a)
- If a is constant:

Separate Chaining: Runtime is a constant!
e Successful: 1+ a/2
e Unsuccessful: 1 + a

Resizing a hash table

When and how do you resize?

Any (review) questions?

