

#3: Memory

January 22, 2018 · Wade Fagen-Ulmschneider

Pointers and References
Often, we will have direct access to our object:

 Sphere s1; // A variable of type Sphere

Occasionally, we have a reference or pointer to our data:

 Sphere & s1; // A reference variable of type Sphere

Sphere * s1; // A pointer that points to a Sphere

Pointers
Unlike reference variables, which alias another variable’s memory,
pointers are variables with their own memory. Pointers store the
memory address of the contents they’re “pointing to”.

Three things to remember on pointers:
 1.

 2.

 3.

main.cpp
4

5

6

7

8

9

10

11

12

13

int main() {

 cs225::Sphere s;

 std::cout << "Address storing `s`:" << &s << std::endl;

 cs225::Sphere *ptr = &s;

 std::cout << "Addr. storing ptr: "<< &ptr << std::endl;

 std::cout << "Contents of ptr: "<< ptr << std::endl;

 return 0;

}

Indirection Operators:

 &v

 *v

 v->

Stack Memory:

example1.cpp
1

2

3

4

5

6

7

8

9

int main() {

 int a;

 int b = -3;

 int c = 12345;

 int *p = &b;

 return 0;

}

Location
Value Type Name

0xffff00f0

0xffff00e8

0xffff00e0

0xffff00d8

0xffff00d0

example2.cpp

3

4

5

6

7

8

int main() {

 cs225::Sphere s;

 cs225::Sphere *p = &s;

 return 0;

}

Location
Value Type Name

0xffff00f0

0xffff00e8

0xffff00e0

0xffff00d8

0xffff00d0

Stack Frames
All variables (including parameters to the function) that are part of a
function are part of that function’s stack frame. A stack frame:

1.

2.

stackframe.cpp

1

2

3

4

5

int hello() {

 int a = 100;

 return a;

}

6

7

8

9

10

11

12

13

int main() {

 int a;

 int b = -3;

 int c = hello();

 int d = 42;

 return 0;

}

Location
Value Type Name

0xffff00f0

0xffff00e8

0xffff00e0

0xffff00d8

0xffff00d0

Puzzle: What happens here?

puzzle.cpp
4

5

6

7

8

9

10

11

12

13

14

Sphere *CreateUnitSphere() {

 Sphere s(1);

 return &s;

}

int main() {

 Sphere *s = CreateUnitSphere();

 double r = s->getRadius();

 double v = s->getVolume();

 return 0;

}

Heap Memory:
As programmers, we can use heap memory in cases where the lifecycle
of the variable exceeds the lifecycle of the function.

1. The only way to create heap memory is with the use of the
new keyword. Using new will:

2. The only way to free heap memory is with the use of the
delete keyword. Using delete will:

3. Memory is never automatically reclaimed, even if it goes out of
scope. Any memory lost, but not freed, is considered to be
“leaked memory”.

heap1.cpp

4

5

6

7

8

9

int main() {

 int *p = new int;

 Sphere *s = new Sphere(10);

 return 0;

}

Stack
Value Heap

Value
0x42020

0x42018

0x42010

0x42008

0x42000

0xffff00f0

0xffff00e8

0xffff00e0

0xffff00d8

0xffff00d0

CS 225: TTBD Exam 0 starts tomorrow; MP1 due Monday (Jan. 29)

