

#12: Iterators

February 12, 2018 · Wade Fagen-Ulmschneider

Data Structures Review

 List ADT
o Linked Memory Implementation (“Linked List”)

 O(1) insert/remove at front/back
 O(1) insert/remove after a given element
 O(n) lookup by index

o Array Implementation (“Array List”)
 O(1) insert/remove at front/back
 O(n) insert/remove at any other location
 O(1) lookup by index

 Queue ADT
o FIFO: First in, first out – like a line/queue at a shop
o Implemented with a list, O(1) enqueue/dequeue

 Stack ADT
o LIFO: Last in, first out – list a stack of papers
o Implemented with a list, O(1) push/pop

Example 1

Example 2

Three designs for data storage in data structures:

1. T & data

2. T * data

3. T data

Tradeoffs between our data store strategies:

1. Who manages the lifecycle of the data?
2. Is it possible to store a NULL as the data?
3. If the data is manipulated by user code while stored in our data

structure, are the changes reflected within our data structure?
4. What is the relative speed compared to other methods?

 Storage by

Reference
Storage by
Pointer

Storage by
Value

Lifecycle
management of data?

Possible to insert
NULL?

External data
manipulation?

Speed

Queue<int> q;

q.enqueue(3);

q.enqueue(8);

q.enqueue(4);

q.dequeue();

q.enqueue(7);

q.dequeue();

q.dequeue();

q.enqueue(2);

q.enqueue(1);

q.enqueue(3);

q.enqueue(5);

q.dequeue();

q.enqueue(9);

Queue<char> q;

q.enqueue('m');

q.enqueue('o');

q.enqueue('n');

…

q.enqueue('d');

q.enqueue('a');

q.enqueue('y');

q.enqueue('i');

q.enqueue('s');

q.dequeue();

q.enqueue('h');

q.enqueue('a');

Accessing Every Element in Our List / Queue / Stack
Suppose we want to look through every element in our data structure.
What if we don’t know what our data structure even looks like?

Linked List

 Array

Hypercube

Iterators
In C++, iterators provide an interface for client code access to data in
a way that abstracts away the internals of the data structure.

An instance of an iterator is a current location in a pass through the
data structure:

Type Cur. Location Current Data Next

Linked List

Array

Hypercube

The iterator minimally implements three member functions:
 operator*, Returns the current data
 operator++, Advance to the next data
 operator!=, Determines if the iterator is at a different location

Implementing an Iterator
A class that implements an iterator must have two pieces:

1. [Implementing Class]:

2. [Implementing Class’ Iterator]:
A separate class (usually an internal public member class) that
extends std::iterator and implements an iterator.

Using an Iterator

stlList.cpp
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#include <list>

#include <string>

#include <iostream>

struct Animal {

 std::string name, food;

 bool big;

 Animal(std::string name = "blob", std::string food = "you",

bool big = true) :

 name(name), food(food), big(big) { /* none */ }

}

int main() {

 Animal g("giraffe", "leaves", true),

 p("penguin", "fish", false), b("bear");

 std::list<Animal> zoo;

 zoo.push_back(g);

 zoo.push_back(p); // std::list’s insertAtEnd

 zoo.push_back(b);

 for (std::list<Animal>::iterator it = zoo.begin();

 it != zoo.end(); it++)

{

 std::cout << (*it).name << " " << (*it).food << std::endl;

 }

 return 0;

}

Q: What does the above code do?

For-Each loop with Iterators

stlList-forEach.cpp
20

21

22

for (const Animal & animal : zoo) {

 std::cout << animal.name << " " << animal.food << std::endl

}

CS 225 – Things To Be Doing:

1. Programming Exam A starts Feb. 13 (tomorrow!)
2. MP2 due tonight; MP3 released tomorrow
3. lab_quacks released on Wednesday
4. Daily POTDs

