

#26: Hashing

2 5 March 26, 2018 · Wade Fagen-Ulmschneider

Every hash table contains three pieces:

- 1. A **hash function**, **f(k)**. The hash function transforms a key from the keyspace into a small integer.
- 2. An array.
- 3. **A mystery** third element.

Collision Handling Strategy #2: Probe-based Hashing

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

I inear Probing.					
Lincar i robing.					
Γry h(k) = (k + 0) % 7, if full					
$\Gamma ry h(k) = (k + 1) \% 7$, if full					
$\Gamma ry h(k) = (k + 2) \% 7$, if full					

Linear Probing leads to Primary Clustering

Description:

Remedy:

Double Hashing:

Example:
$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$$

 $h_1(k) = k \% 7, h_2(k) = 5 - (k \% 5), |Array| = N$

Double Hashing: Try $h(k) = (k + + 0*h_2(k)) \% 7$, if full... Try $h(k) = (k + + 1*h_2(k)) \% 7$, if full... Try $h(k) = (k + + 2*h_2(k)) \% 7$, if full... ...

$$h(k, i) = (h_1(k) + i^*h_2(k)) \% 7$$

Running Time:

Linear Probing:

- Successful: ¹/₂(1 + 1/(1-α))
- Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

Double Hashing:

- Successful: $1/\alpha * \ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

Separate Chaining:

- Successful: $1 + \alpha/2$
- Unsuccessful: $1 + \alpha$

Running Time Observations:

- 1. As α increases:
- 2. If α is held constant:

Running Time Observations:

Linear Probing: Successful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})$ Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$ Double Hashing: Successful: 1/α * ln(1/(1-α)) Unsuccessful: 1/(1-α)

Analysis of Dictionary-based Data Structures

	Hash Table		AVI	List
	Amortized	Worst Case		List
Find				
Insert				
Storage Space				

A Secret, Mystery Data Structure:

ReHashing:

What happens when the array fills?

Better question:

Algorithm:

Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables replace?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

ADT:

insert

remove

isEmpty

CS 225 – Things To Be Doing:

- 1. Theory Exam 3 starts next week (Tuesday, April 3rd)
- 2. MP5 has been released; EC⁺⁷ deadline is tonighit
- **3.** lab_btree due this Tuesday, March 27th at 11:59pm
- **4.** Daily POTDs are ongoing!