

#30: Disjoint Sets

April 4, 2018 · Wade Fagen-Ulmschneider

Disjoint Sets
Let R be an equivalence relation. We represent R as several disjoint
sets. Two key ideas from Monday:

 Each element exists in exactly one set.

 Every set is an equitant representation.
o Mathematically: 4 ∈ [0]R 8 ∈ [0]R
o Programmatically: find(4) == find(8)

Building Disjoint Sets:

• Maintain a collection S = {s0, s1, … sk}
• Each set has a representative member.
• ADT:

 void makeSet(const T & t);
 void union(const T & k1, const T & k2);
 T & find(const T & k);

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Operation: find(k)

Operation: union(k1, k2)

Implementation #2:
• Continue to use an array where the index is the key
• The value of the array is:

• -1, if we have found the representative element
• The index of the parent, if we haven’t found the rep.

element

Impl #2 (continued):

Example:

4 8 5 6 -1 -1 -1 -1 4 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

…where is the error in this table?

Implementation – DisjointSets::find

DisjointSets.cpp (partial)
1

2

3

4

int DisjointSets::find(int i) {

 if (s[i] < 0) { return i; }

 else { return _find(s[i]); }

}

What is the running time of find?

What is the ideal UpTree?

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

Implementation – DisjointSets::union

DisjointSets.cpp (partial)
1

2

3

4

void DisjointSets::union(int r1, int r2) {

}

How do we want to union the two UpTrees?

Building a Smart Union Function

The implementation of this visual model is the following:

6 6 6 8 -1 10 7 -1 7 7 4 5

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

What are possible strategies to employ when building a “smart
union”?

Smart Union Strategy #1: _________________
Idea: Keep the height of the tree as small as possible!

Metadata at Root:

After union(4, 7):

6 6 6 8 10 7 7 7 4 5

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Smart Union Strategy #2: ________________
Idea: Minimize the number of nodes that increase in height.
(Observe that the tree we union have all their nodes gain in height.)

Metadata at Root:

After union(4, 7):

6 6 6 8 10 7 7 7 4 5

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Smart Union Implementation:

DisjointSets.cpp (partial)
1

2

3

4

5

6

7

8

9

void DisjointSets::unionBySize(int root1, int root2) {

 int newSize = arr_[root1] + arr_[root2];

 if (arr_[root1] < arr_[root2]) {

 arr_[root2] = root1; arr_[root1] = newSize;

 } else {

 arr_[root1] = root2; arr_[root2] = newSize;

 }

}

CS 225 – Things To Be Doing:

1. Theory Exam 3 is on-going
2. MP6 released; Extra Credit deadline on Monday, April 9th
3. lab_heaps released today
4. Daily POTDs are ongoing!

