€S2 | #36: Minimum Spanning Trees T Pseudocode for DFS
2 5) April 18, 2018 - Wade Fagen-Ulmschneider 2 I,(IPL{:: Graph, G
3 Output: A labeling of the edges on
. 4 G as di d d
BFS Graph Observations 5 as ciscovery and cross edges
6 foreach (Vertex v : G.vertices()):
. . 7 setLabel (v, UNEXPLORED)
1. D.ogs. our implementation handle 8 foreach (Edge e : G.edges())
disjoint graphs? How? 9 setLabel (e, UNEXPLORED)
10 foreach (Vertex v : G.vertices()):
H di 11 if getLabel (v) == UNEXPLORED:
a. How can we modify our 12 BFS (G, v)
code to count 13
2 14 | BFS(G, Vv):
components? Bl " oo <
16 setLabel (v, VISITED)
17 q.enqueue (V)
. . 18
2. Can our implementation detect a T while lq.empty () :
cycle? How? 20 v = gq.dequeue ()
21 foreach (Vertex w : G.adjacent(v)):
. . 22 if tLabel == UNEXPLORED:
a. Howcan we.modlfy our code to store update a private 23 * g:tLabZI f:) w, DISCOVERY)
member variable cycleDetected ? 24 setLabel (w, VISITED)
- 25 q.enqueue (w)
26 elseif getLabel (v, w) == UNEXPLORED:
27 setLabel (v, w, CROSS)
3. What is the running time of our algorithm?
Big Ideas: Utility of a BFS Traversal
Obs. 1: Traversals can be used to count components.
Obs. 2: Traversals can be used to detect cycles.
. Obs. 3: In BFS, d provides the shortest distance to eve
4. What is the shortest path between A and H? ve rteX3 @D Y
Obs. 4: In BFS, the endpoints of a cross edge never differ in
distance, d, by more than 1: |d(u) -d(v)| =1

5. What is the shortest path between E and H?
Depth First Search — A Modification to BFS

a. What does that tell us about BFS?

A — (D)
| ®—@ 4 .
6. What does a cross edge tell us about its endpoints? [- - & H)
/”K\}'_'_ f
O

7. What structure is made from discovery edges in G?

dfvizj ,;

T‘c-ii ay Hﬁjjmmjm% g'::a I @I"j/mr}: 4////,4"‘,‘;&
S S S
e T g
”Q&J% e et
/) %0 %
S - T
/5 S5 J

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

A Spanning Tree on a connected graph G is a subgraph, G’, such
that:

1. Everyvertexis Gisin G’ and

2. G’is connected with the minimum number of edges

This construction will always create a new graph that is a tree
(connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal
total edge weights among all spanning trees.
¢ Every edge must have a weight
o The weights are unconstrained, except they must be
additive (eg: can be negative, can be non-integers)
e Output of a MST algorithm produces G’:
o G’isaspanning graph of G
o Glisatree
o G’ has a minimal total weight among all spanning trees

Kruskal’s Algorithm

(A, D)
(E, H)
(F, G)
(8, D)
(G, E)
(G, H)
(E, Q)
(C, H)
(E, F)
(F, C)
(D, E)
(8, Q)
(¢, D)
(A, F)
(D, F)

Pseudocode for Kruskal’s MST Algorithm

CS 225 — Things To Be Doing:

1. Programming Exam C ongoing

2. MP7 is released; EC due tonight, Monday, April 23th
3. lab_graphs available today; dues Sunday, April 22nd
4. Daily POTDs are ongoing!

WoOoOJoUld WN K

KruskalMST (G) :
DisjointSets forest
foreach (Vertex v :

forest.makeSet (v)

PriorityQueue Q
foreach (Edge e : G
Q.insert (e)

Graph T = (V, {})

while |T.edges ()| <
Vertex (u, v) =0Q
if forest.find (u)
T.addEdge (u, v
forest.union (

return T

G):
// min edge weight

) :

n-1:
.removeMin ()

== forest.find(v):

)
forest.find (u),
forest.find(v))

http://csunplugged.org/minimal-spanning-trees/

