

#36: Minimum Spanning Trees

April 18, 2018 · Wade Fagen-Ulmschneider

BFS Graph Observations

1. Does our implementation handle
disjoint graphs? How?

a. How can we modify our
code to count
components?

2. Can our implementation detect a
cycle? How?

a. How can we modify our code to store update a private
member variable cycleDetected_?

3. What is the running time of our algorithm?

4. What is the shortest path between A and H?

5. What is the shortest path between E and H?

a. What does that tell us about BFS?

6. What does a cross edge tell us about its endpoints?

7. What structure is made from discovery edges in G?

Pseudocode for DFS
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

BFS(G):

 Input: Graph, G

 Output: A labeling of the edges on

 G as discovery and cross edges

 foreach (Vertex v : G.vertices()):

 setLabel(v, UNEXPLORED)

 foreach (Edge e : G.edges()):

 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):

 if getLabel(v) == UNEXPLORED:

 BFS(G, v)

BFS(G, v):

 Queue q

 setLabel(v, VISITED)

 q.enqueue(v)

 while !q.empty():

 v = q.dequeue()

 foreach (Vertex w : G.adjacent(v)):

 if getLabel(w) == UNEXPLORED:

 setLabel(v, w, DISCOVERY)

 setLabel(w, VISITED)

 q.enqueue(w)

 elseif getLabel(v, w) == UNEXPLORED:

 setLabel(v, w, CROSS)

Big Ideas: Utility of a BFS Traversal

Obs. 1: Traversals can be used to count components.
Obs. 2: Traversals can be used to detect cycles.
Obs. 3: In BFS, d provides the shortest distance to every
vertex.
Obs. 4: In BFS, the endpoints of a cross edge never differ in
distance, d, by more than 1: |d(u) - d(v)| = 1

Depth First Search – A Modification to BFS

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

A Spanning Tree on a connected graph G is a subgraph, G’, such
that:

1. Every vertex is G is in G’ and
2. G’ is connected with the minimum number of edges

This construction will always create a new graph that is a tree
(connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal
total edge weights among all spanning trees.

 Every edge must have a weight
o The weights are unconstrained, except they must be

additive (eg: can be negative, can be non-integers)

 Output of a MST algorithm produces G’:
o G’ is a spanning graph of G
o G’ is a tree
o G’ has a minimal total weight among all spanning trees

CS 225 – Things To Be Doing:

1. Programming Exam C ongoing
2. MP7 is released; EC due tonight, Monday, April 23th
3. lab_graphs available today; dues Sunday, April 22nd
4. Daily POTDs are ongoing!

Kruskal’s Algorithm

Pseudocode for Kruskal’s MST Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

KruskalMST(G):

 DisjointSets forest

 foreach (Vertex v : G):

 forest.makeSet(v)

 PriorityQueue Q // min edge weight

 foreach (Edge e : G):

 Q.insert(e)

 Graph T = (V, {})

 while |T.edges()| < n-1:

 Vertex (u, v) = Q.removeMin()

 if forest.find(u) == forest.find(v):

 T.addEdge(u, v)

 forest.union(forest.find(u),

 forest.find(v))

 return T

http://csunplugged.org/minimal-spanning-trees/

