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BFS Graph Observations 
 

1. Does our implementation handle 
disjoint graphs?  How? 
 

a. How can we modify our 
code to count 
components? 

 
 

2. Can our implementation detect a 
cycle?  How? 
 

a. How can we modify our code to store update a private 
member variable cycleDetected_? 

 
 

3. What is the running time of our algorithm? 
 
 
 
 

4. What is the shortest path between A and H? 
 
 
 
 

5. What is the shortest path between E and H? 
 

a. What does that tell us about BFS? 
 
 
 

6. What does a cross edge tell us about its endpoints? 
 
 
 
 

7. What structure is made from discovery edges in G? 
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BFS(G): 

  Input: Graph, G 

  Output: A labeling of the edges on 

      G as discovery and cross edges 

 

  foreach (Vertex v : G.vertices()): 

    setLabel(v, UNEXPLORED) 

  foreach (Edge e : G.edges()): 

    setLabel(e, UNEXPLORED) 

  foreach (Vertex v : G.vertices()): 

    if getLabel(v) == UNEXPLORED: 

       BFS(G, v) 

 

BFS(G, v): 

  Queue q 

  setLabel(v, VISITED) 

  q.enqueue(v) 

 

  while !q.empty(): 

    v = q.dequeue() 

    foreach (Vertex w : G.adjacent(v)): 

      if getLabel(w) == UNEXPLORED: 

         setLabel(v, w, DISCOVERY) 

         setLabel(w, VISITED) 

         q.enqueue(w) 

      elseif getLabel(v, w) == UNEXPLORED: 

         setLabel(v, w, CROSS) 

 
Big Ideas: Utility of a BFS Traversal 

Obs. 1: Traversals can be used to count components. 
Obs. 2: Traversals can be used to detect cycles. 
Obs. 3: In BFS, d provides the shortest distance to every 
vertex. 
Obs. 4: In BFS, the endpoints of a cross edge never differ in 
distance, d, by more than 1: |d(u) - d(v)| = 1 

 

 

Depth First Search – A Modification to BFS 
 

 
 



 
“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0 

 

 
A Spanning Tree on a connected graph G is a subgraph, G’, such 
that: 

1. Every vertex is G is in G’ and 
2. G’ is connected with the minimum number of edges 

 
This construction will always create a new graph that is a tree 
(connected, acyclic graph) that spans G. 
 

 
A Minimum Spanning Tree is a spanning tree with the minimal 
total edge weights among all spanning trees. 

 Every edge must have a weight 
o The weights are unconstrained, except they must be 

additive (eg: can be negative, can be non-integers) 

 Output of a MST algorithm produces G’: 
o G’ is a spanning graph of G 
o G’ is a tree 
o G’ has a minimal total weight among all spanning trees 

 

 
CS 225 – Things To Be Doing: 

1. Programming Exam C ongoing 
2. MP7 is released; EC due tonight, Monday, April 23th  
3. lab_graphs available today; dues Sunday, April 22nd  
4. Daily POTDs are ongoing! 

Kruskal’s Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Pseudocode for Kruskal’s MST Algorithm 
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KruskalMST(G): 

  DisjointSets forest 

  foreach (Vertex v : G): 

    forest.makeSet(v) 

 

  PriorityQueue Q    // min edge weight 

  foreach (Edge e : G): 

    Q.insert(e) 

 

  Graph T = (V, {}) 

   

  while |T.edges()| < n-1: 

    Vertex (u, v) = Q.removeMin() 

    if forest.find(u) == forest.find(v): 

       T.addEdge(u, v) 

       forest.union( forest.find(u), 

                     forest.find(v) ) 

 

  return T 
 
 

http://csunplugged.org/minimal-spanning-trees/

