

#38: Dijkstra’s Algorithm

April 23, 2018 · Wade Fagen-Ulmschneider

Prim’s Algorithm (Minimum Spanning Tree)

Pseudocode for Prim’s MST Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

PrimMST(G, s):

 Input: G, Graph;

 s, vertex in G, starting vertex of algorithm

 Output: T, a minimum spanning tree (MST) of G

 foreach (Vertex v : G):

 d[v] = +inf

 p[v] = NULL

 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]

 Q.buildHeap(G.vertices())

 Graph T // "labeled set"

 repeat n times:

 Vertex m = Q.removeMin()

 T.add(m)

 foreach (Vertex v : neighbors of m not in T):

 if cost(v, m) < d[v]:

 d[v] = cost(v, m)

 p[v] = m

 return T

Adj. Matrix

Adj. List

Heap

Unsorted Array

Running Time of MST Algorithms

 Kruskal’s Algorithm:

 Prim’s Algorithm:

Q: What must be true about the connectivity of a graph when running
an MST algorithm?

 …what does this imply about the relationship between n and m?

Q: Suppose we built a new heap that optimized the decrease-key
operation, where decreasing the value of a key in a heap updates the
heap in amortized constant time, or O(1)*. How does that change
Prim’s Algorithm runtime?

Shortest Path Home:

Dijkstra’s Algorithm (Single Source Shortest Path)

Dijkstra’s Algorithm Overview:

 The overall logic is the same as Prim’s Algorithm

 We will modify the code in only two places – both involving
the update to the distance metric.

 The result is a directed acyclic graph or DAG

Pseudocode for Dijkstra’s SSSP Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

DijkstraSSSP(G, s):

 Input: G, Graph;

 s, vertex in G, starting vertex of algorithm

 Output: T, DAG w/ shortest paths (and distances) to s

 foreach (Vertex v : G):

 d[v] = +inf

 p[v] = NULL

 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]

 Q.buildHeap(G.vertices())

 Graph T // "labeled set"

 repeat n times:

 Vertex m = Q.removeMin()

 T.add(m)

 foreach (Vertex v : neighbors of m not in T):

 if ________________________ < d[v]:

 d[v] = _________________________

 p[v] = m

 return T

Dijkstra: What if we have a negative-weight cycle?

Dijkstra: What if we have a minimum-weight edge, without having a
negative-weight cycle?

Dijkstra makes an assumption:

Dijkstra: What is the running time?

CS 225 – Things To Be Doing:

1. Final Exam runs Thursday, May 3 – Thursday, May 10
2. MP7 is released; EC due tonight, Monday, April 23th
3. Final lab, lab_ml, released Wednesday
4. This week is the last week of POTDs (last POTD is Friday!)

