

An Incomplete Topic List for CS 225

May 2, 2018

Course Introduction
Constructing a C++ class

 C++’s use of encapsulation (.h / .cpp files)

 Boilerplate code for C++ classes

 “public” and “private” sections of a C++ class

Constructing a C++ program

 Namespaces, including std:: and cs225::

 Utility functions like std::cout

 main()
Building a C++ class

 Constructor

Pointers
Stack (“automatic”) memory in C++

 Stack memory addressing (high addresses, growing down)

 Stack frames

 sizeof() operator

Heap (“allocated”) memory in C++

 Heap memory addresses (low addresses, growing up)

 new/delete

 Memory -based operators (unary & and *)

Passing parameters in C++ and tradeoffs

 Pass by value

 Pass by pointer

 Pass by reference
const modifier

Returns in C++ and tradeoffs:

 Return by value

 Return by pointer

 Return by reference
Operator overloading
Automatic default properties of a class:

 Automatic default constructor

 Automatic default copy constructor

 Automatic default destructor

 Automatic default assignment operator
C++’s “Rule of Three”

Inheritance

 C++ inheritance syntax (public inheritance)

 Abstract classes in C++

 Virtual methods in C++

 Pure virtual methods in C++

 Order of construction/destruction of derived classes

Templates

 Motivation

 Templated functions

 Templated classes

List ADT

 Array-based list vs. linked-list list

 C++ Implementation using Templates

List Analysis by Implementation

 Analysis of insert(), including:

 Unsorted list, unsorted array: O(1)

 Sorted array, sorted list: O(n)

 Analysis of insertAfter(*ptr), including:

 Most notable: Linked list O(1) given pointer

 Analysis of insertAtFront():

 Most notable: Array amortized O(1) w/ smart resize

Stack ADT
LIFO ordering property

Analysis: O(1) push() and pop() operations w/ array and w/ list

Array resize strategy: double the size + move the data
Array resize analysis: O(n) operations every O(n) times, amortized O(1)

Queue ADT
FIFO ordering property
C++ Iterators:

 Purpose and abstraction

 Use of overloaded operators ++ and *

 Use of ::begin() and ::end()

 Concept of ::end() being “one past the end”

Functors in C++

 Overloaded call operator, operator()

 Purpose and utility

Vocabulary:

 vertex/node, edge, path, root, parent, sibling, children, ancestor, descendant,
subtree, and leaves

 Recursive definition of a binary tree (not a BST!)

 Tree properties:

o full binary tree

o perfect binary tree

o complete binary tree

Tree ADT: insert, remove, and traverse
Tree Proof: How many NULL points exist in a binary tree with n nodes?
Binary tree traversals:

 in-order

 pre-order

 post-order

 level-order

Binary tree search:

 depth-first searching

 breadth-first searching
Understanding the different aims of traversal vs. serach
Dictionary ADT

Binary Search Tree (BST)

 Recursive ordered property of a BST

 Running times of a BST, in terms of n and in terms of h
Operations on a BST

 find()

 Use of return-by-reference to use find for insert() and remove()

BST Proof: Minimum number nodes in a tree of height h.
 ⇒ Largest possible height (h) given a tree of n nodes.
Comparison of BST best case vs. worst case vs. arrays/lists

“Height balance” (b) of a node (and therefore a tree)
AVL Tree Rotations:

 Motivation and purpose

 Four types of rotations: L, R, LR, and RL

 Running time of a rotation

Theorems on which rotation to use based on the height balance
Bound on number of rotations:

 Max 1 rotation on insert

 Max 0 rotations on find

 Max lg(n) rotations on remove

AVL Proof: The maximum height (h) of a tree given n nodes.
 ...prove a 2*lg(n) bound, understand a tighter proof can prove 1.44.

Applications of AVL:

 Range-based searching

 Nearest neighbor searching

o Application: kd-tree

Motivation of BTree
Idea: Non-classical analysis of BTree due to not all operations taking the same amount of
time

Understand a BTree of order m and its properties

BTree Operations: find, insert
BTree Proof: Minimum keys on a BTree of order m.

Motivation of hashing
Dictionary ADT w/ a hash table
Properties of a hash algorithm:

 Hash function

o Properties of a good hash function

o SUHA

 Array

o Load factor

o Running times in term of the load factor

 Collision detection strategy

Collision detection strategies:

 Open hashing:

o Separate Chaining

 Closed hashing:

o Linear probing

o Double hashing
Purpose and utility of hashing vs. balanced BSTs

Running times of removeMin() across sorted/unsorted arrays/lists

 ⇒ Motivation of a heap data structure
Recursive definition of a heap

Heap operations: insert, removeMin, buildHeap

 heapifyUp

 heapifyDown

 O(n) buildHeap
Applications of heaps:

 heap sort

Heap Proof: Running time of buildHeap is O(n)

Motivation of equivalence relations and a disjoint set (representative element)
Array-based Disjoint Sets

UpTree operations: union and find

 Lazy union/find

 Smart union: by size, by height

 Path compression
Running time of an UpTree

 How does iterated log grow?

 What can we assume about this growth when used in another algorithm?

…and 4 weeks of graphs (covered recently, reviewed in lecture)!

