
CS 225
Data Structures

Feb. 28 – AVL Trees
Wade Fagen-Ulmschneider

Course Logistics Update
CBTF exams will go on as-scheduled:
• Theory Exam 2 is ongoing
• Sample Exam available on PL

MPs and Lab assignments will be due on schedule:
• MP4 is released; due March 12, 2018
• lab_huffman is released later today

My office hours are cancelled today.

Lab Sections
All lab sections are not meeting this week.

Instead, all CAs and non-striking TAs will hold open office
hours (using the regular queue, held in the basement):
• Feel free to use the room to work with your peers on the

lab. Staff will be available in open office hours in the
basement of Siebel.

• An intro video on Huffman trees will be provided.

13

10 25

38

51

40 84

8966

95

Left Rotation

13

10 25

38

51

84

89

A

B

C D

13

10 25

38

51

84

89

A

B

C D

84

51 89

A B C D

13

10 25

38

51

40 84

8966

95

13

10 25

37

38

51

13

10 25

37

38

51

BST Rotation Summary
- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:

AVL Trees
Three issues for consideration:
- Rotations
- Maintaining Height
- Detecting Imbalance

AVL Tree Rotations
Four templates for rotations:

t

t1

t2

t3 t4

Theorem:
If an insertion occurred in subtrees
t3 or t4 and a subtree was detected
at t, then a __________ rotation
about t restores the balance of the
tree.

We gauge this by noting the balance
factor of t->right is ______.

Finding the Rotation

t

t1

t2 t3

t4

Theorem:
If an insertion occurred in subtrees
t2 or t3 and a subtree was detected
at t, then a __________ rotation
about t restores the balance of the
tree.

We gauge this by noting the balance
factor of t->right is ______.

Finding the Rotation

Insertion into an AVL Tree

5

3 6

4

2

8

10

9 12

111 7
struct TreeNode {

T key;

unsigned height;

TreeNode *left;

TreeNode *right;

};

1

2

3

4

5

6

_insert(6.5)

Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

Insertion into an AVL Tree

5

3 6

4

2

8

10

9 12

111 7
struct TreeNode {

T key;

unsigned height;

TreeNode *left;

TreeNode *right;

};

1

2

3

4

5

6

_insert(6.5)

template <class T> void AVLTree<T>::_insert(const T & x, treeNode<T> * & t) {

if(t == NULL) {

t = new TreeNode<T>(x, 0, NULL, NULL);

}

else if(x < t->key) {

_insert(x, t->left);

int balance = height(t->right) - height(t->left);

int leftBalance = height(t->left->right) - height(t->left->left);

if (balance == -2) {

if (leftBalance == -1) { rotate_____________(t); }

else { rotate_____________(t); }

}

}

else if(x > t->key) {

_insert(x, t->right);

int balance = height(t->right) - height(t->left);

int rightBalance = height(t->right->right) - height(t->right->left);

if(balance == 2) {

if(rightBalance == 1) { rotate_____________(t); }

else { rotate_____________(t); }

}

}

t->height = 1 + max(height(t->left), height(t->right));

}

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Height-Balanced Tree
Height balance: b = height(TR) - height(TL)

5

3 6

4

2

8

10

9 12

111 7

AVL Tree Analysis
We know: insert, remove and find runs in: __________.

We will argue that: h = _________.

AVL Tree Analysis
Definition of big-O:

…or, with pictures:

