
CS 225
Data Structures

Feb. 28 – AVL Trees
Wade Fagen-Ulmschneider



Course Logistics Update
CBTF exams will go on as-scheduled:
• Theory Exam 2 is ongoing
• Sample Exam available on PL

MPs and Lab assignments will be due on schedule:
• MP4 is released; due March 12, 2018
• lab_huffman is released later today

My office hours are cancelled today.



Lab Sections
All lab sections are not meeting this week.

Instead, all CAs and non-striking TAs will hold open office 
hours (using the regular queue, held in the basement):
• Feel free to use the room to work with your peers on the 

lab.  Staff will be available in open office hours in the 
basement of Siebel.

• An intro video on Huffman trees will be provided.
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BST Rotation Summary
- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:



AVL Trees
Three issues for consideration:
- Rotations
- Maintaining Height
- Detecting Imbalance



AVL Tree Rotations
Four templates for rotations:
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Theorem:
If an insertion occurred in subtrees 
t3 or t4 and a subtree was detected 
at t, then a __________ rotation 
about t restores the balance of the 
tree.

We gauge this by noting the balance 
factor of t->right is ______.

Finding the Rotation
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Insertion into an AVL Tree
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struct TreeNode {

T key;

unsigned height;

TreeNode *left;

TreeNode *right;

};
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Insert (pseudo code):
1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

Insertion into an AVL Tree
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struct TreeNode {

T key;

unsigned height;

TreeNode *left;

TreeNode *right;
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template <class T> void AVLTree<T>::_insert(const T & x, treeNode<T> * & t ) {

if( t == NULL ) {

t = new TreeNode<T>( x, 0, NULL, NULL);

}

else if( x < t->key ) {

_insert( x, t->left );

int balance = height(t->right) - height(t->left);

int leftBalance = height(t->left->right) - height(t->left->left);

if ( balance == -2 ) {

if ( leftBalance == -1 ) { rotate_____________( t ); }

else                     { rotate_____________( t ); }

}

}

else if( x > t->key ) {

_insert( x, t->right );

int balance = height(t->right) - height(t->left);

int rightBalance = height(t->right->right) - height(t->right->left);

if( balance == 2 ) {

if( rightBalance == 1 ) { rotate_____________( t ); }

else                    { rotate_____________( t ); }

}

}

t->height = 1 + max(height(t->left), height(t->right));

}
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Height-Balanced Tree
Height balance:   b = height(TR) - height(TL)
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AVL Tree Analysis
We know: insert, remove and find runs in: __________.

We will argue that: h = _________.



AVL Tree Analysis
Definition of big-O:

…or, with pictures:


