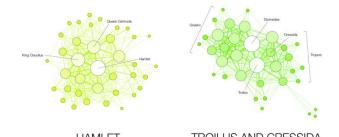
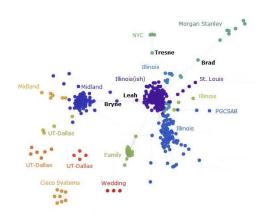
CS 225

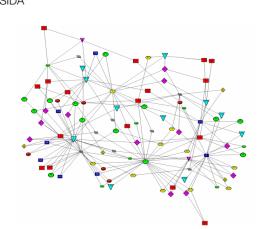
Data Structures

April 11 — Graphs Wade Fagen-Ulmschneider

Graphs

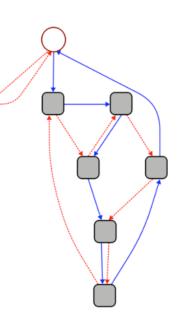


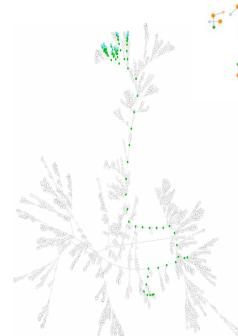


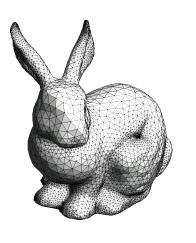


To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms







Graph Vocabulary

```
G = (V, E)
|V| = n
|E| = m
                     (2, 5)
```

Degree(v): ||

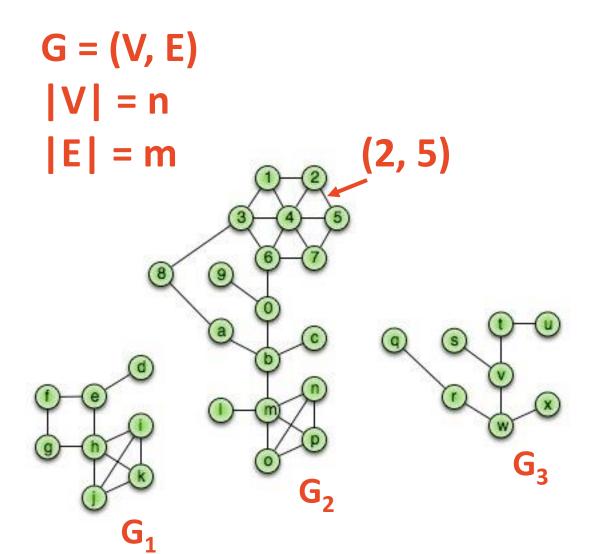
Adjacent Vertices: A(v) = { x : (x, v) in E }

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary



```
Subgraph(G):

G' = (V', E'):

V' \in V, E' \in E, \text{ and}

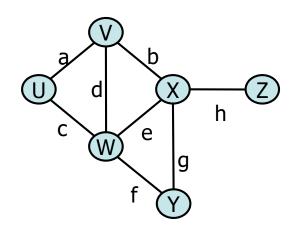
(u, v) \in E \rightarrow u \in V', v \in V'
```

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? Minimum edges:

Not Connected:



Connected*:

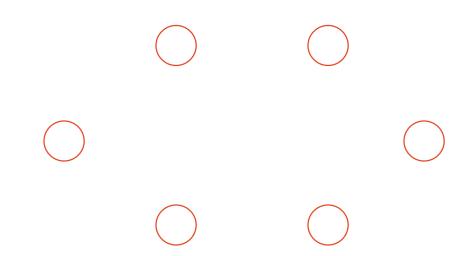
Maximum edges:

Simple:

Not simple:

$$\sum_{v \in V} \deg(v) =$$

Connected Graphs



Proving the size of a minimally connected graph

Theorem:

Every minimally connected graph **G=(V, E)** has **|V|-1** edges.

Thm: Every minimally connected graph G=(V, E) has |V|-1 edges.

Proof: Consider an arbitrary, minimally connected graph **G=(V, E)**.

Lemma 1: Every connected subgraph of **G** is minimally connected. (Easy proof by contradiction left for you.)

Inductive Hypothesis: For any j < |V|, any minimally connected graph of j vertices has j-1 edges.

Suppose |**V**| = **1**:

Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: |V| -1 edges \rightarrow 1-1 = 0.

Suppose |**V**| > **1**:

Choose any vertex **u** and let **d** denote the degree of **u**.

Remove the incident edges of **u**, partitioning the graph into ____

components: $C_0 = (V_0, E_0), ..., C_d = (V_d, E_d).$

By Lemma 1, every component \mathbf{C}_k is a minimally connected subgraph of \mathbf{G} .

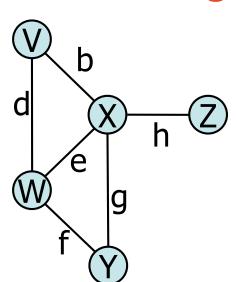
By our _____: _____

Finally, we count edges:

Graph ADT

Data:

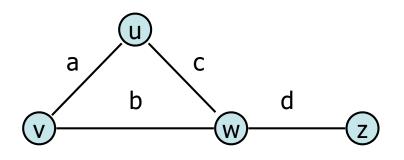
- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

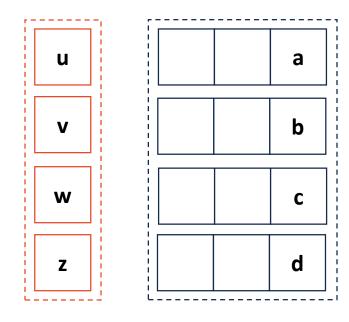


Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List





insertVertex(K key);

removeVertex(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

Graph Implementation: Adjacency Matrix

